Citation: | HU Jinsong, JIANG Wanling, CHEN Youjia, XU Yiwen, ZHAO Tiesong, SHU Feng. 3D Wireless Secure Transmission under Random Frequency Diversity Array Assisted by Deep Learning[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2063-2070. doi: 10.11999/JEIT220457 |
[1] |
YERRAPRAGADA A K, EISMAN T, and KELLEY B. Physical layer security for beyond 5G: Ultra secure low latency communications[J]. IEEE Open Journal of the Communications Society, 2021, 2: 2232–2242. doi: 10.1109/OJCOMS.2021.3105185
|
[2] |
ARFAOUI M A, SOLTANI D M, TAVAKKOLNIA I, et al. Physical layer security for visible light communication systems: A survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1887–1908. doi: 10.1109/COMST.2020.2988615
|
[3] |
WEI Zhongxiang, MASOUROS C, and LIU Fan. Secure directional modulation with few-bit phase shifters: Optimal and iterative-closed-form designs[J]. IEEE Transactions on Communications, 2021, 69(1): 486–500. doi: 10.1109/TCOMM.2020.3032459
|
[4] |
ZHANG Bo, LIU Wei, LI Qiang, et al. Directional modulation design under a given symbol-independent magnitude constraint for secure IoT networks[J]. IEEE Internet of Things Journal, 2021, 8(20): 15140–15147. doi: 10.1109/JIOT.2020.3040303
|
[5] |
HU Jinsong, SHU Feng, and LI Jun. Robust synthesis method for secure directional modulation with imperfect direction angle[J]. IEEE Communications Letters, 2016, 20(6): 1084–1087. doi: 10.1109/LCOMM.2016.2550022
|
[6] |
SHU Feng, TENG Yin, LI Jiayu, et al. Enhanced secrecy rate maximization for directional modulation networks via IRS[J]. IEEE Transactions on Communications, 2021, 69(12): 8388–8401. doi: 10.1109/TCOMM.2021.3110598
|
[7] |
MA Yezi, WEI Ping, and ZHANG Huaguo. General focusing beamformer for FDA: Mathematical model and resolution analysis[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3089–3100. doi: 10.1109/TAP.2019.2900400
|
[8] |
HU Jinsong, YAN Shihao, SHU Feng, et al. Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays[J]. IEEE Access, 2017, 5: 1658–1667. doi: 10.1109/ACCESS.2017.2653182
|
[9] |
SHU Feng, WU Xiaomin, HU Jinsong, et al. Secure and precise wireless transmission for random-subcarrier-selection-based directional modulation transmit antenna array[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(4): 890–904. doi: 10.1109/JSAC.2018.2824231
|
[10] |
WANG Shuaiyu, YAN Shihao, ZHANG Jia, et al. Secrecy zone achieved by directional modulation with random frequency diverse array[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 2001–2006. doi: 10.1109/TVT.2021.3054803
|
[11] |
XIE Ning, LI Zhuoyuan, and TAN Haijun. A survey of physical-layer authentication in wireless communications[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 282–310. doi: 10.1109/COMST.2020.3042188
|
[12] |
LIN Tian and ZHU Yu. Beamforming design for large-scale antenna arrays using deep learning[J]. IEEE Wireless Communications Letters, 2020, 9(1): 103–107. doi: 10.1109/LWC.2019.2943466
|
[13] |
HUANG Hongji, SONG Yiwei, YANG Jie, et al. Deep-learning-based millimeter-wave massive MIMO for hybrid precoding[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3027–3032. doi: 10.1109/TVT.2019.2893928
|
[14] |
ZENG Jun, HE Zhengran, SUN Jinlong, et al. Deep transfer learning for 5G massive MIMO downlink CSI feedback[C]. 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 2021.
|
[15] |
HU Zhengyang, GUO Jianhua, LIU Guanzhang, et al. MRFNet: A deep learning-based CSI feedback approach of massive MIMO systems[J]. IEEE Communications Letters, 2021, 25(10): 3310–3314. doi: 10.1109/LCOMM.2021.3099841
|