Advanced Search
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHOU Tao, HOU Senbao, LU Huiling, LIU Yuncan, DANG Pei. C2 Transformer U-Net: A Medical Image Segmentation Model for Cross-modality and Contextual Semantics[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1807-1816. doi: 10.11999/JEIT220445
Citation: ZHOU Tao, HOU Senbao, LU Huiling, LIU Yuncan, DANG Pei. C2 Transformer U-Net: A Medical Image Segmentation Model for Cross-modality and Contextual Semantics[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1807-1816. doi: 10.11999/JEIT220445

C2 Transformer U-Net: A Medical Image Segmentation Model for Cross-modality and Contextual Semantics

doi: 10.11999/JEIT220445
Funds:  The National Natural Science Foundation of China (62062003), The Key Research and Development Projects of Ningxia Autonomous Region (2020BEB04022), The National Natural Science Foundation of Ningxia (2022AAC03149), The Introduction of Talents and Scientific Research Start-up Project of Northern University for Nationalities (2020KYQD08)
  • Received Date: 2022-04-14
  • Accepted Date: 2022-08-25
  • Rev Recd Date: 2022-08-24
  • Available Online: 2022-08-30
  • Publish Date: 2023-05-10
  • Cross-modal medical images can provide more semantic information at the same lesion. In view of the U-Net network uses mainly single-modal images for segmentation, the cross-modal and contextual semantic correlations are not fully considered. Therefore, a cross-modal and contextual semantic-oriented medical image segmentation C2 Transformer U-Net model is proposed. The main idea of this model is: first, a backbone and auxiliary U-Net network structure is proposed in the encoder part to extract semantic information of different modalities; Then, the Multi-modal Context semantic Awareness Processor (MCAP) is designed to extract effectively the semantic information of the same lesion across modalities. After adding the two modal images using the backbone network in the skip connection, it is passed to the Transformer decoder. This enhances the expression ability of the model to the lesion; Secondly, the pre-activated residual unit and Transformer architecture are used in the encoder-decoder. On the one hand, the contextual feature information of the lesion is extracted, and on the other hand, the network pays more attention to the location information of the lesion when making full use of low-level and high-level features; Finally, the effectiveness of the algorithm is verified by using a clinical multi-modal lung medical image dataset. Comparative experimental results show that the Acc, Pre, Recall, Dice, Voe and Rvd of the proposed model for lung lesion segmentation are: 97.95%, 94.94%, 94.31%, 96.98%, 92.57% and 93.35%. For the segmentation of lung lesions with complex shapes, it has high accuracy and relatively low redundancy. Overall, it outperforms existing state-of-the-art methods.
  • loading
  • [1]
    DALCA A V, GUTTAG J, and SABUNCU M R. Anatomical priors in convolutional networks for unsupervised biomedical segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake, USA, 2018: 9290–9299.
    [2]
    ZHOU Tao, LU Huiling, YANG Zaoli, et al. The ensemble deep learning model for novel COVID-19 on CT images[J]. Applied Soft Computing, 2021, 98: 106885. doi: 10.1016/j.asoc.2020.106885
    [3]
    JAMES A P and DASARATHY B V. Medical image fusion: A survey of the state of the art[J]. Information Fusion, 2014, 19: 4–19. doi: 10.1016/j.inffus.2013.12.002
    [4]
    LI Haoming, JIANG Huiyan, LI Siqi, et al. DenseX-Net: An end-to-end model for lymphoma segmentation in whole-body PET/CT Images[J]. IEEE Access, 2020, 8: 8004–8018. doi: 10.1109/ACCESS.2019.2963254
    [5]
    HUSSEIN S, GREEN A, WATANE A, et al. Automatic segmentation and quantification of white and brown adipose tissues from PET/CT Scans[J]. IEEE Transactions on Medical Imaging, 2017, 36(3): 734–744. doi: 10.1109/TMI.2016.2636188
    [6]
    MU Wei, CHEN Zhe, SHEN Wei, et al. A segmentation algorithm for quantitative analysis of heterogeneous tumors of the cervix with 18F-FDG PET/CT[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(10): 2465–2479. doi: 10.1109/TBME.2015.2433397
    [7]
    ZHOU Tao, DONG YaLi, LU HuiLing, et al. APU-Net: An attention mechanism parallel U-Net for lung tumor segmentation[J]. BioMed Research International, 2022, 2022: 5303651. doi: 10.1155/2022/5303651
    [8]
    CUI Hui, WANG Xiuying, LIN W, et al. Primary lung tumor segmentation from PET-CT volumes with spatial-topological constraint[J]. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(1): 19–29. doi: 10.1007/s11548-015-1231-0
    [9]
    ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6230–6239.
    [10]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Identity mappings in deep residual networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 630–645.
    [11]
    HAN Guang, ZHU Mengcheng, ZHAO Xuechen, et al. Method based on the cross-layer attention mechanism and multiscale perception for safety helmet-wearing detection[J]. Computers and Electrical Engineering, 2021, 95: 107458. doi: 10.1016/j.compeleceng.2021.107458
    [12]
    WANG Sinong, LI B Z, KHABSA M, et al. Linformer: Self-attention with linear complexity[EB/OL]. https://arxiv.org/abs/2006.04768, 2020.
    [13]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems (NIPS'17), Long Beach, USA, 2017: 6000–6010.
    [14]
    BELLO L, ZOPH B, LE Q, et al. Attention augmented convolutional networks[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 3285–3294.
    [15]
    PARMAR N, VASWANI A, USZKOREIT J, et al. Image transformer[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 4052–4061.
    [16]
    RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 2015: 234−241.
    [17]
    LAN Hengrong, JIANG Daohuai, YANG Changchun, et al. Y-Net: Hybrid deep learning image reconstruction for photoacoustic tomography in vivo[J]. Photoacoustics, 2020, 20: 100197. doi: 10.1016/j.pacs.2020.100197
    [18]
    BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
    [19]
    XU Lina, TETTEH G, LIPKOVA J, et al. Automated whole-body bone lesion detection for multiple myeloma on 68Ga-pentixafor PET/CT imaging using deep learning methods[J]. Contrast Media & Molecular Imaging, 2018, 2018: 2391925. doi: 10.1155/2018/2391925
    [20]
    OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: Learning where to look for the pancreas[EB/OL]. https://arxiv.org/abs/1804.03999, 2018.
    [21]
    LIU Jin, KANG Yanqin, QIANG Jun, et al. Low-dose CT imaging via cascaded ResUnet with spectrum loss[J]. Methods, 2022, 202: 78–87. doi: 10.1016/j.ymeth.2021.05.005
    [22]
    CAO Zheng, YU Bohan, LEI Biwen, et al. Cascaded SE-ResUnet for segmentation of thoracic organs at risk[J]. Neurocomputing, 2021, 453: 357–368. doi: 10.1016/j.neucom.2020.08.086
    [23]
    GAO Yunhe, ZHOU Mu, and METAXAS D. UTNet: A hybrid transformer architecture for medical image segmentation[EB/OL]. https://arxiv.org/abs/2107.00781, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (1174) PDF downloads(242) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return