Citation: | XIE Minghong, KANG Bin, LI Huafeng, ZHANG Yafei. Crowded Pedestrian Detection Method Combining Anchor Free and Anchor Base Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1833-1841. doi: 10.11999/JEIT220444 |
[1] |
YE Mang, SHEN Jianbing, LIN Gaojie,
et al. Deep learning for person Re-identification: A survey and outlook[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872–2893. doi: 10.1109/TPAMI.2021.3054775
|
[2] |
MARVASTI-ZADEH S M, CHENG Li, GHANEI-YAKHDAN H,
et al. Deep learning for visual tracking: A comprehensive survey[J].
IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 3943–3968. doi: 10.1109/TITS.2020.3046478
|
[3] |
贲晛烨, 徐森, 王科俊. 行人步态的特征表达及识别综述[J]. 模式识别与人工智能, 2012, 25(1): 71–81. doi: 10.3969/j.issn.1003-6059.2012.01.010
BEN Xianye, XU Sen, and WANG Kejun. Review on pedestrian gait feature expression and recognition[J].
Pattern Recognition and Artificial Intelligence, 2012, 25(1): 71–81. doi: 10.3969/j.issn.1003-6059.2012.01.010
|
[4] |
邹逸群, 肖志红, 唐夏菲, 等. Anchor-free的尺度自适应行人检测算法[J]. 控制与决策, 2021, 36(2): 295–302. doi: 10.13195/j.kzyjc.2020.0124
ZOU Yiqun, XIAO Zhihong, TANG Xiafei,
et al. Anchor-free scale adaptive pedestrian detection algorithm[J].
Control and Decision, 2021, 36(2): 295–302. doi: 10.13195/j.kzyjc.2020.0124
|
[5] |
ZHOU Chunluan and YUAN Junsong. Bi-box regression for pedestrian detection and occlusion estimation[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 135–151.
|
[6] |
WANG Xinlong, XIAO Tete, JIANG Yuning, et al. Repulsion loss: Detecting pedestrians in a crowd[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7774–7783.
|
[7] |
CHI Cheng, ZHANG Shifeng, XING Junliang, et al. Relational learning for joint head and human detection[C]. The Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, USA, 2020: 10647–10654.
|
[8] |
陈勇, 谢文阳, 刘焕淋, 等. 结合头部和整体信息的多特征融合行人检测[J]. 电子与信息学报, 2022, 44(4): 1453–1460. doi: 10.11999/JEIT210268
CHEN Yong, XIE Wenyang, LIU Huanlin,
et al. Multi-feature fusion pedestrian detection combining head and overall information[J].
Journal of Electronics&
Information Technology, 2022, 44(4): 1453–1460. doi: 10.11999/JEIT210268
|
[9] |
LIU Songtao, HUANG Di, and WANG Yunhong. Adaptive NMS: Refining pedestrian detection in a crowd[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6452–6461.
|
[10] |
HUANG Xin, GE Zheng, JIE Zequn, et al. NMS by representative region: Towards crowded pedestrian detection by proposal pairing[C]. The 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10747–10756.
|
[11] |
REN Shaoqing, HE Kaiming, GIRSHICK R,
et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[12] |
ZHOU Xingyi, WANG Dequan, and KRÄHENBÜHL P. Objects as points[EB/OL]. https://arxiv.org/abs/1904.07850, 2019.
|
[13] |
LIN T Y, GOYAL P, GIRSHICK R,
et al. Focal loss for dense object detection[J].
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826
|
[14] |
ZHENG Zhaohui, WANG Ping, REN Dongwei,
et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J].
IEEE Transactions on Cybernetics, 2022, 52(8): 8574–8586. doi: 10.1109/TCYB.2021.3095305
|
[15] |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS--improving object detection with one line of code[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5562–5570.
|
[16] |
SHAO Shuai, ZHAO Zijian, LI Boxun, et al. CrowdHuman: A benchmark for detecting human in a crowd[EB/OL]. https://arxiv.org/abs/1805.00123, 2018.
|
[17] |
ZHANG Shanshan, BENENSON R, and SCHIELE B. CityPersons: A diverse dataset for pedestrian detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017, 4457–4465.
|
[18] |
SHAO Xiaotao, WANG Qing, YANG Wei,
et al. Multi-scale feature pyramid network: A heavily occluded pedestrian detection network based on ResNet[J].
Sensors, 2021, 21(5): 1820. doi: 10.3390/s21051820
|
[19] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
|
[20] |
ZHANG Shifeng, WEN Longyin, BIAN Xiaobian, et al. Occlusion-aware R-CNN: Detecting pedestrians in a crowd[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 657–674.
|
[21] |
PANG Yanwei, XIE Jin, KHAN M H, et al. Mask-guided attention network for occluded pedestrian detection[C]. The 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 4966–4974.
|
[22] |
LIN Zebin, PEI Wenjie, CHEN Fanglin,
et al. Pedestrian detection by exemplar-guided contrastive learning[J].
IEEE Transactions on Image Processing, 2023, 32: 2003–2016. doi: 10.1109/TIP.2022.3189803
|
[23] |
CHU Xuangeng, ZHENG Anlin, ZHANG Xiangyu, et al. Detection in crowded scenes: One proposal, multiple predictions[C]. The 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12211–12220.
|
[24] |
陈勇, 刘曦, 刘焕淋. 基于特征通道和空间联合注意机制的遮挡行人检测方法[J]. 电子与信息学报, 2020, 42(6): 1486–1493. doi: 10.11999/JEIT190606
CHEN Yong, LIU Xi, and LIU Huanlin. Occluded pedestrian detection based on joint attention mechanism of channel-wise and spatial information[J].
Journal of Electronics&
Information Technology, 2020, 42(6): 1486–1493. doi: 10.11999/JEIT190606
|
[25] |
ZHOU Penghao, ZHOU Chong, PENG Pai, et al. NOH-NMS: Improving pedestrian detection by nearby objects hallucination[C]. The 28th ACM International Conference on Multimedia, Seattle, USA, 2020: 1967–1975.
|
[26] |
LIN M, LI Chuming, BU Xingyuan, et al. DETR for crowd pedestrian detection[EB/OL]. https://arxiv.org/abs/2012.06785, 2020.
|
[27] |
SHANG Mingyang, XIANG Dawei, WANG Zhicheng, et al. V2F-Net: Explicit decomposition of occluded pedestrian detection[EB/OL]. https://arxiv.org/abs/2104.03106, 2021.
|
[28] |
LI Zeming, PENG Chao, YU Gang, et al. DetNet: A backbone network for object detection[EB/OL]. https://arxiv.org/abs/1804.06215, 2018.
|
[29] |
CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154–6162.
|