Citation: | HUANG Hongcheng, SU Meidan, KOU Lan, TAO Yang, HU Min. Multi-party Human-computer Interaction Dialogue Psychology Model Based on Stackelberg Game[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1758-1765. doi: 10.11999/JEIT220441 |
[1] |
陈鑫, 周强. 开放型对话技术研究综述[J]. 中文信息学报, 2021, 35(11): 1–12.
CHEN Xin and ZHOU Qiang. A survey of research on open domain dialogue systems[J].
Journal of Chinese Information Processing, 2021, 35(11): 1–12.
|
[2] |
ZHU Qingfu, CUI Lei, ZHANG Weinan, et al. Retrieval-enhanced adversarial training for neural response generation[C]. The 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 3763–3773.
|
[3] |
UTHUS D C and AHA D W. Multiparticipant chat analysis: A survey[J].
Artificial Intelligence, 2013, 199/200: 106–121. doi: 10.1016/j.artint.2013.02.004
|
[4] |
张开颜, 张伟男, 刘挺. 基于深度学习的多方对话研究综述[J]. 中国科学:信息科学, 2021, 51(8): 1217–1232. doi: 10.1360/SSI-2020-0176
ZHANG Kaiyan, ZHANG Weinan, and LIU Ting. A survey of multi-party dialogue research based on deep learning[J].
Scientia Sinica Informationis, 2021, 51(8): 1217–1232. doi: 10.1360/SSI-2020-0176
|
[5] |
KENNINGTON C, FUNAKOSHI K, TAKAHASHI Y, et al. Probabilistic multiparty dialogue management for a game master robot[C]. 2014 ACM/IEEE International Conference on Human-Robot Interaction, Bielefeld, Germany, 2014: 200–201.
|
[6] |
ŻARKOWSKI M. Multi-party turn-taking in repeated human-robot interactions: An interdisciplinary evaluation[J].
International Journal of Social Robotics, 2019, 11(5): 693–707. doi: 10.1007/s12369-019-00603-1
|
[7] |
DE BAYSER M G, GUERRA M A, CAVALIN P, et al. Specifying and implementing multi-party conversation rules with finite-state-automata[C]. The Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 713–719.
|
[8] |
MALIK U, SAUNIER J, FUNAKOSHI K, et al. Who speaks next? Turn change and next speaker prediction in multimodal multiparty interaction[C]. The 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence, Baltimore, USA, 2020: 349–354.
|
[9] |
LE Ran, HU Wenpeng, SHANG Mingyue, et al. Who is speaking to whom? Learning to identify utterance addressee in multi-party conversations[C]. The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019: 1909–1919.
|
[10] |
TAN Ming, WANG Dakuo, GAO Yupeng, et al. Context-aware conversation thread detection in multi-Party Chat[C]. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019: 6456–6461.
|
[11] |
HU Wenpeng, CHAN Zhangming, LIU Bing, et al. GSN: A graph-structured network for multi-party dialogues[C]. The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 5010–5016.
|
[12] |
DZIRI N, KAMALLOO E, MATHEWSON K, et al. Augmenting neural response generation with context-aware topical attention[C]. The First Workshop on NLP for Conversational AI, Florence, Italy, 2019: 18–31.
|
[13] |
成驰. 一类基于Stackelberg博弈的多智能体强化学习算法[D]. [硕士论文], 南京大学, 2017.
CHENG Chi. A multi-agent reinforcement learning algorithm based on stackelberg game[D]. [Master dissertation], Nanjing University, 2017.
|
[14] |
华生. 欲望心理学: 人际交往中的心理博弈[M]. 北京: 中央编译出版社, 2016: 1–5.
HUA Sheng. Psychology on Desire: Psychological Game in Interpersonal Communication[M]. Beijing: Central Compilation & Translation Press, 2016: 1–5.
|
[15] |
赵姝, 刘晓曼, 段震, 等. 社交关系挖掘研究综述[J]. 计算机学报, 2017, 40(3): 535–555. doi: 10.11897/SP.J.1016.2017.00535
ZHAO Shu, LIU Xiaoman, DUAN Zhen,
et al. A survey on social ties mining[J].
Chinese Journal of Computers, 2017, 40(3): 535–555. doi: 10.11897/SP.J.1016.2017.00535
|
[16] |
韩程程, 李磊, 刘婷婷, 等. 语义文本相似度计算方法[J]. 华东师范大学学报:自然科学版, 2020(5): 95–112. doi: 10.3969/j.issn.1000-5641.202091011
HAN Chengcheng, LI Lei, LIU Tingting,
et al. Approaches for semantic textual similarity[J].
Journal of East China Normal University:
Natural Science, 2020(5): 95–112. doi: 10.3969/j.issn.1000-5641.202091011
|
[17] |
HASAN M, RAHMAN A, KARIM R, et al. Normalized approach to find optimal number of topics in Latent Dirichlet allocation (LDA)[M]. KAISER M S, BANDYOPADHYAY A, MAHMUD M, et al. Proceedings of International Conference on Trends in Computational and Cognitive Engineering. Singapore: Springer, 2021: 341–354.
|
[18] |
SUN Xiang, LIU Lu, AYORINDE A,
et al. ED-SWE: Event detection based on scoring and word embedding in online social networks for the internet of people[J].
Digital Communications and Networks, 2021, 7(4): 559–569. doi: 10.1016/j.dcan.2021.03.006
|
[19] |
LU Xin, DENG Yao, SUN Ting,
et al. MKPM: Multi keyword-pair matching for natural language sentences[J].
Applied Intelligence, 2022, 52(2): 1878–1892. doi: 10.1007/s10489-021-02306-5
|
[20] |
SHANMUGAPRIYA P and MARIMUTHU H. Development of chatterbot using python[J].
International Journal of Computer Applications, 2020, 176(21): 18–20. doi: 10.5120/ijca2020920184
|
[21] |
YOUFOU. Wxpy messages[EB/OL]. https://wxpy.readthedocs.io/zh/latest/messages.html, 2021.
|
[22] |
YANG Qichuan, HE Zhiqiang, ZHAN Zhiqiang,
et al. End-to-End personalized humorous response generation in untrimmed multi-role dialogue system[J].
IEEE Access, 2019, 7: 94059–94071. doi: 10.1109/ACCESS.2019.2926830
|
[23] |
WU Yu, WU Wei, XING Chen, et al. Sequential matching network: A new architecture for multi-turn response selection in retrieval-based chatbots[C]. The 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 496–505.
|