Citation: | GUO Zehua, DOU Songshi, QI Li, LAN Julong. A Survey of Maintaining the Path Programmability in Software-Defined Wide Area Networks[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1899-1910. doi: 10.11999/JEIT220418 |
[1] |
KREUTZ Diego, RAMOS M V F, VERÍSSIMO P E, et al. Software-defined networking: A comprehensive survey[J]. Proceedings of the IEEE, 2015, 103(1): 14–76. doi: 10.1109/JPROC.2014.2371999
|
[2] |
JAIN S, KUMAR A, MANDAL S, et al. B4: Experience with a globally-deployed software defined WAN[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 3–14. doi: 10.1145/2534169.2486019
|
[3] |
HONG Chiyao, KANDULA S, MAHAJAN R, et al. Achieving high utilization with software-driven WAN[C]. The ACM SIGCOMM 2013 Conference on SIGCOMM, Hong Kong, China, 2013: 15–26.
|
[4] |
First in the U. S. to Mobile 5G – What’s next? Defining AT&T’s network path in 2019 and beyond[EB/OL]. https://about.att.com/story/2019/2019_and_beyond.html, 2019.
|
[5] |
OpenFlow Switch Specification. Version 1.5. 1 (Protocol version 0x06)[EB/OL]. https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf, 2015.
|
[6] |
LEVIN D, WUNDSAM A, HELLER B, et al. Logically centralized?: State distribution trade-offs in software defined networks[C]. The First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 2012: 1–6.
|
[7] |
HELLER B, SHERWOOD R, and MCKEOWN N. The controller placement problem[J]. ACM SIGCOMM Computer Communication Review, 2012, 42(4): 473–478. doi: 10.1145/2377677.2377767
|
[8] |
ONOS controller[EB/OL]. https://onosproject.org/.
|
[9] |
OpenDayLight controller [EB/OL]. https://www.opendaylight.org/.
|
[10] |
ONGARO D and OUSTERHOUT J. In search of an understandable consensus algorithm[C]. The 2014 USENIX conference on USENIX Annual Technical Conference, Philadelphia, USA, 2014: 305–320.
|
[11] |
HOCK D, HARTMANN M, GEBERT S, et al. Pareto-optimal resilient controller placement in SDN-based core networks[C]. The 2013 25th International Teletraffic Congress (ITC), Shanghai, China, 2013: 1–9.
|
[12] |
TANHA M, SAJJADI Dawood, and PAN Jianping. Enduring node failures through resilient controller placement for software defined networks[C]. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, USA, 2016: 1–7.
|
[13] |
TANHA M, SAJJADI D, RUBY R, et al. Capacity-aware and delay-guaranteed resilient controller placement for software-defined WANs[J]. IEEE Transactions on Network and Service Management, 2018, 15(3): 991–1005. doi: 10.1109/TNSM.2018.2829661
|
[14] |
KILLI B P R and RAO S V. Capacitated next controller placement in software defined networks[J]. IEEE Transactions on Network and Service Management, 2017, 14(3): 514–527. doi: 10.1109/TNSM.2017.2720699
|
[15] |
ALSHAMRANI A, GUHA S, PISHARODY S, et al. Fault tolerant controller placement in distributed SDN environments[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–7.
|
[16] |
ALENAZI M J F and ÇETINKAYA E K. Resilient placement of SDN controllers exploiting disjoint paths[J]. Transactions on Emerging Telecommunications Technologies, 2020, 31(2): e3725. doi: 10.1002/ett.3725
|
[17] |
SANTOS D, GOMES T, and TIPPER D. SDN controller placement with availability upgrade under delay and geodiversity constraints[J]. IEEE Transactions on Network and Service Management, 2021, 18(1): 301–314. doi: 10.1109/TNSM.2020.3049013
|
[18] |
YANG Ze and YEUNG K L. SDN candidate selection in hybrid IP/SDN networks for single link failure protection[J]. IEEE/ACM Transactions on Networking, 2020, 28(1): 312–321. doi: 10.1109/TNET.2019.2959588
|
[19] |
高洁, 邬江兴, 胡宇翔, 等. 基于拜占庭容错的软件定义网络控制面的抗攻击性研究[J]. 计算机应用, 2017, 37(8): 2281–2286. doi: 10.11772/j.issn.1001-9081.2017.08.2281
GAO Jie, WU Jiangxing, HU Yuxiang, et al. Research of control plane’ anti-attacking in software-defined network based on Byzantine fault-tolerance[J]. Journal of Computer Applications, 2017, 37(8): 2281–2286. doi: 10.11772/j.issn.1001-9081.2017.08.2281
|
[20] |
XIE Junjie, GUO Deke, QIAN Chen, et al. Validation of distributed SDN control plane under uncertain failures[J]. IEEE/ACM Transactions on Networking, 2019, 27(3): 1234–1247. doi: 10.1109/TNET.2019.2914122
|
[21] |
HU Yannan, WANG Wendong, GONG Xiangyang, et al. On reliability-optimized controller placement for software-defined networks[J]. China Communications, 2014, 11(2): 38–54. doi: 10.1109/CC.2014.6821736
|
[22] |
ZHANG Lingyu, WANG Ying, LI Wenjing, et al. A survivability-based backup approach for controllers in multi-controller SDN against failures[C]. 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), Seoul, Korea (South), 2017: 100–105.
|
[23] |
HU Tao, GUO Zehua, ZHANG Jianhui, et al. Adaptive slave controller assignment for fault-tolerant control plane in software-defined networking[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–6.
|
[24] |
HU Tao, YI Peng, GUO Zehua, et al. Dynamic slave controller assignment for enhancing control plane robustness in software-defined networks[J]. Future Generation Computer Systems, 2019, 95: 681–693. doi: 10.1016/j.future.2019.01.010
|
[25] |
HE Fujun, SATO T, and OKI E. Master and slave controller assignment model against multiple failures in software defined network[C]. ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6.
|
[26] |
HE Fujun and OKI E. Load balancing model against multiple controller failures in software defined networks[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
|
[27] |
HE Fujun and OKI E. Main and secondary controller assignment with optimal priority policy against multiple failures[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4391–4405. doi: 10.1109/TNSM.2021.3064646
|
[28] |
MISRA S, SARKAR K, and AHMED N. Blockchain-based controller recovery in SDN[C]. IEEE INFOCOM 2020 – IEEE IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, Canada, 2020: 1063–1068.
|
[29] |
BASU K, HAMDULLAH A, and BALL F. Architecture of a cloud-based fault-tolerant control platform for improving the QoS of social multimedia applications on SD-WAN[C]. 2020 13th International Conference on Communications (COMM), Bucharest, Romania, 2020: 495–500.
|
[30] |
乐宗港, 黄刘生, 徐宏力. 基于AMQP的SDN控制器故障恢复机制[J]. 通信技术, 2017, 50(3): 487–491. doi: 10.3969/j.issn.1002-0802.2017.03.018
LE Zonggang, HUANG Liusheng, and XU Hongli. Failure recovery mechanism of SDN controller based on AMQP[J]. Communications Technology, 2017, 50(3): 487–491. doi: 10.3969/j.issn.1002-0802.2017.03.018
|
[31] |
REN Xiaodon, AUJLA S G, JINDAL A, et al. Adaptive recovery mechanism for SDN controllers in Edge-Cloud supported FinTech applications[J]. IEEE Internet of Things Journal, 2023, 10(3): 2112–2120. doi: 10.1109/JIOT.2021.3064468
|
[32] |
GUILLEN L, IZUMI S, ABE T, et al. A resilient mechanism for multi-controller failure in hybrid SDN-based networks[C]. 2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS), Tainan, China, 2021: 285–290.
|
[33] |
DHARAM P and DEY M. A mechanism for controller failover in distributed software-defined networks[C]. 2021 8th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 2021: 196–201.
|
[34] |
AÇAN F, GÜR G, and ALAGÖZ F. Reactive controller assignment for failure resilience in software defined networks[C]. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan, 2019: 1–6.
|
[35] |
CHEN Jia, CHEN Shihua, CHENG Xin, et al. A deep reinforcement learning based switch controller mapping strategy in software defined network[J]. IEEE Access, 2020, 8: 221553–221567. doi: 10.1109/ACCESS.2020.3043511
|
[36] |
MOHAN P M, TRUONG-HUU T, and GURUSAMY M. Primary-backup controller mapping for Byzantine fault tolerance in software defined networks[C]. GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, 2017: 1–7.
|
[37] |
GÜNER S, GÜR G, and ALAGÖZ F. Proactive controller assignment schemes in SDN for fast recovery[C]. 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 2020: 136–141.
|
[38] |
MOHAN P M, TRUONG-HUU T, and GURUSAMY M. Byzantine-resilient controller mapping and remapping in software defined networks[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2714–2729. doi: 10.1109/TNSE.2020.2981521
|
[39] |
SRIDHARAN V, GURUSAMY M, and TRUONG-HUU T. On multiple controller mapping in software defined networks with resilience constraints[J]. IEEE Communications Letters, 2017, 21(8): 1763–1766. doi: 10.1109/LCOMM.2017.2696006
|
[40] |
SRIDHARAN V, LIYANAGE K S K, and GURUSAMY M. Privacy-aware switch-controller mapping in SDN-based IoT networks[C]. 2020 International Conference on Communication Systems & NETworkS (COMSNETS), Bengaluru, India, 2020: 1–6.
|
[41] |
AL-TAM F and CORREIA N. On load balancing via switch migration in software-defined networking[J]. IEEE Access, 2019, 7: 95998–96010. doi: 10.1109/ACCESS.2019.2929651
|
[42] |
AL-TAM F and CORREIA N. Fractional switch migration in multi-controller software-defined networking[J]. Computer Networks, 2019, 157: 1–10. doi: 10.1016/j.comnet.2019.04.011
|
[43] |
DOU Songshi, MIAO Guochun, GUO Zehua, et al. Matchmaker: Maintaining network programmability for Software-Defined WANs under multiple controller failures[J]. Computer Networks, 2021, 192: 108045. doi: 10.1016/j.comnet.2021.108045
|
[44] |
GUO Zehua, DOU Songshi, and JIANG Wenchao. Improving the path programmability for software-defined wans under multiple controller failures[C]. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS), Hangzhou, China, 2020: 1–10.
|
[45] |
DOU Songshi, GUO Zehua, and XIA Yuanqing. ProgrammabilityMedic: Predictable path programmability recovery under multiple controller failures in SD-WANs[C]. 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), Washington DC, USA, 2021: 461–471.
|
[46] |
VAN ADRICHEM N L M, DOERR C, and KUIPERS F A. Opennetmon: Network monitoring in openflow software-defined networks[C]. 2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 2014: 1–8.
|
[47] |
TOOTOONCHIAN A, GHOBADI M, and GANJALI Y. OpenTM: Traffic matrix estimator for OpenFlow networks[C]. 11th International Conference on Passive and Active Network Measurement, Zurich, Switzerland, 2010: 201–210.
|
[48] |
XIE Junjie, GUO Deke, LI Xiaozhou, et al. Cutting long-tail latency of routing response in software defined networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 384–396. doi: 10.1109/JSAC.2018.2815358
|
[49] |
YAO Guang, BI Jun, and GUO Luyi. On the cascading failures of multi-controllers in software defined networks[C]. 2013 21st IEEE International Conference on Network Protocols (ICNP), Goettingen, Germany, 2013: 1–2.
|
[50] |
SHERWOOD R, GIBB G, YAP K K, et al. . Flowvisor: A network virtualization layer[R]. OpenFlow Switch Consortium, Tech. Rep, 2009, 1: 132.
|
[51] |
BERA S, MISRA S, and SAHA N. Traffic-aware dynamic controller assignment in SDN[J]. IEEE Transactions on Communications, 2020, 68(7): 4375–4382. doi: 10.1109/TCOMM.2020.2983168
|
[52] |
YANG Xuwei, XU Hongli, CHEN Shigang, et al. Indirect multi-mapping for burstiness management in software defined networks[J]. IEEE/ACM Transactions on Networking, 2021, 29(5): 2059–2072. doi: 10.1109/TNET.2021.3078132
|
[53] |
Brocade MLX-8 Pe[EB/OL]. [2022–03-29]. https://www.dataswitchworks.com/datasheets/MLX_Series_DS.pdf.
|
[54] |
CHN-IX[EB/OL]. [2022–03-29]. http://www.chn-ix.net/.
|
[55] |
XU Hongli, HUANG He, CHEN Shigang, et al. Achieving high scalability through hybrid switching in software-defined networking[J]. IEEE/ACM Transactions on Networking, 2018, 26(1): 618–632. doi: 10.1109/TNET.2018.2789339
|