
Citation: | GUO Zehua, DOU Songshi, QI Li, LAN Julong. A Survey of Maintaining the Path Programmability in Software-Defined Wide Area Networks[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1899-1910. doi: 10.11999/JEIT220418 |
一直以来,舰船检测及其速度估计都是合成孔径雷达(SAR)领域的热点研究问题,在渔业管理、海上交通管控、海洋资源开采、海洋环境监控等方面都具有重要应用[1,2]。
目前已有几种不同的舰船速度估计算法[3-5]。其中,利用舰船相对于其尾迹顶点的方位向偏移估计舰船速度是最常用的算法[6,7]。然而,受海况和雷达系统参数等的影响,舰船尾迹很多时候并不能在SAR图像上体现出来[8]。2008年,Dragosevic等人[4]提出了一种基于自适应处理的舰船距离向速度估计算法,该算法实现起来较为复杂[9]。2012年,孙海青等人[10]利用SAR子孔径序列图像获取了舰船的速度,但是该算法需要SAR系统具有较长的合成孔径时间。2016年,Renga等人[11]提出了一种基于多普勒中心频率的舰船距离向速度估计算法,但是该算法不适用于速度较快且尺寸较小的目标。同时,现有算法一般只能估计出舰船的距离向速度,为了获得舰船完整的速度信息,需要同时估计出其方位向速度。一般来说,舰船的方位向速度会造成其回波信号方位向调频率的变化[12],因此通过估计舰船回波信号的方位向调频率可以计算其方位向速度。然而受海杂波的影响,当舰船信杂比较低时,通过估计调频率获得的方位向速度的精度较低。
针对上述问题,本文提出了一种基于局域中心频率的SAR图像舰船方位向速度估计方法。由于运动,舰船在合成孔径时间内会跨越多个方位分辨单元,导致在某一局部小区域内,舰船的多普勒历程只占其整个多普勒谱的一部分[13]。因此,舰船在不同方位局部小区域内具有不同的多普勒中心频率,且中心频率是近似线性变化的,变化的斜率与舰船的方位向速度有关。本文方法根据方位向功率谱的概率密度函数,采用最大似然估计算法,从SAR图像局域方位向功率谱中估计出多普勒中心频率的变化斜率,进而计算出舰船的方位向速度。实验结果表明,本文方法的估计结果较为准确,且当舰船的信杂比较低时,本文方法仍具有较高的估计精度。
本节首先分析动目标在SAR图像局域多普勒中心频率的变化特性,然后推导利用该变化估计目标方位向速度的理论公式。由于舰船也是动目标,上述推导也适用于舰船目标。接下来给出利用最大似然估计算法计算局域中心频率增量的方法。
若只考虑方位向速度,经过成像处理后,动目标的方位向信号可以表示为[14]
S(t)=G((Vs+Va)Kat(Ka−Kt)R)exp(jπ(KtKaKa−Kt)t2),t∈[−T2(Ka−Kt)Ka,T2(Ka−Kt)Ka] | (1) |
其中,
fd(t0)≈KtKaKa−Ktt0≈2(Vs+Va)2V2sλRVa(2Vs+Va)t0 | (2) |
从式(2)中可以看出,沿方位向运动的目标在SAR图像上局部位置的多普勒中心频率会随着局部窗口中心时刻(即SAR图像局部位置)的变化而近似线性变化,且变化的斜率与目标的方位向速度有关。图1为动目标局域多普勒谱随方位时间窗变化的示意图,其中实线图表示目标在当前时刻的位置,虚线图表示在前一时刻和后一时刻的位置。可以看到,在不同的方位时刻,相应的局部区域只包含动目标多普勒谱的一部分,导致其具有不同的中心频率。
根据式(2),若相邻局域中心时刻的间隔为
Va=−Vs±√kV2s(k−V2s)V2s−k | (3) |
其中,
一般来说,动目标的距离向加速度也会造成目标方位向多普勒特性的变化,进而影响对其方位向速度的估计。然而舰船通常以近似恒定的速度航行[4],因此舰船的距离向加速度对其方位向速度估计的影响一般可以忽略。
2.1节的分析表明,在估计出相邻局域中心频率的增量
假设舰船目标在SAR单视复图像上占据
P(f)=Pp(f)+Pc(f)+In | (4) |
其中,
fmd=(m−⌈N/2⌉)⋅Δfd, m=1,2,···,N | (5) |
在该分块数据中,舰船目标的带宽为
Pm(f)=Imsexp(−(f−fmd)2Δf2d)+IcPa(f)+In | (6) |
其中,
p(ym(i);Δfd)=1Γ(L)(LPm(fi))LymL−1(i)⋅exp(−Lym(i)Pm(fi)),i=1,2,···,N′a |
(7)
其中,
pm(;Δfd)=N′a∏i=1p(ym,i;Δfd)=(1Γ(L))N′a⋅N′a∏i=1(LPm,i)Lym,iL−1⋅exp(−Lym,iPm,i) |
(8)
其中,
lnp(;Δfd)=ln(N∏m=1pm(;Δfd))=N∑m=1[−LN′a∑i=1(lnPm,i+ym,iPm,i)+S(ym)] |
(9)
其中,
S(ym)=(L−1)N′a∑i=1lnym,i+N′a(LlnL−lnΓ(L)) |
(10)
由最大似然估计理论可知,若
Δ˜fd=argmaxΔfdlnp(;Δfd) | (11) |
则
Δ˜fd=argminΔfdF(Δfd) | (12) |
由式(12)可知,对
从式(3)可以看出,本文算法的估计精度主要受
var(Δfd)≥−1/E[∂2lnp(;Δfd)/∂Δfd2] | (13) |
将式(5)、式(6)、式(9)代入式(13)得
var(Δfd)≥1/LN∑m=1N′a∑i=1(exp(−(fi−fmd)2Δf2d)(2fi(fi−fmd)Δf3d)exp(−(fi−fmd)2Δf2d)+ImSCRPa(fi)+ImSNR)2 | (14) |
其中,
参数 | 仿真1 | 仿真2 | 仿真3 | 仿真4 | 仿真5 | 仿真6 |
PRF | 500 | 500 | 500 | 500 | 500 | 500 |
Is | 100 | 100 | 100 | 100 | 100 | 100 |
Δfd | 10 | 10 | 10 | 10 | 10 | 1~20 |
N | 13 | 13 | 13 | 13 | 5~50 | 13 |
N′a | 128 | 128 | 128 | 50~500 | 128 | 128 |
L | 10 | 10 | 5~100 | 10 | 10 | 10 |
SCR | 2 | 0~15 | 2 | 2 | 2 | 2 |
SNR | 0~15 | 6 | 6 | 6 | 6 | 6 |
为了研究本文算法的估计精度,对每一组仿真都进行500次重复实验,计算估计结果的方差。不同参数条件下,本文算法的估计方差与CRB的对比如图3所示。从图3中可以看出,随着
3.1节的结果表明,本文算法的估计精度同时受分块长度
为了验证本文方法的可行性,分别将本文方法应用于仿真和实际数据,并将本文方法估计的速度与直接计算调频率获得的速度进行对比。
在这一小节中,将本文方法应用于点目标仿真数据,仿真参数如表2所示。其中,点目标的距离向速度都为0。
雷达波长(m) | 调频率(Hz/s) | 距离带宽(MHz) | 天线长度(m) | PRF
(Hz) |
平台速度(m/s) | 平台高度(m) | 近端斜距(m) | 信噪比(dB) | 信杂比(dB) | 目标1方位向速度(m/s) | 目标2方位向速度(m/s) | 目标3方位向速度(m/s) |
0.2308 | 2.8e13 | 25 | 4 | 900 | 100 | 8100 | 10000 | 2 | 6 | –10 | –5 | 5 |
以目标1为例,分析其在SAR图像局域的方位向功率谱。如图4(a)所示,将该目标沿方位向分为6个相邻的子图像,子图像中心时刻的间隔为
下面以目标1为例,对比分析不同信杂比下本文方法的估计结果与直接估计调频率所得的结果。为了研究估计结果精度,对每一组仿真都进行200次重复实验,并计算估计结果的均值和方差,估计结果如表3所示。可以看到,相对于调频率法,本文方法具有更高的精度。同时可以看到,当信杂比较低时,调频率法的估计误差较大,而本文方法仍然具有较高的精度。
SCR(dB) | 均值(m/s) | 方差(m2/s2) | |||
本文方法 | 调频率法 | 本文方法 | 调频率法 | ||
20 | –10.05 | –11.01 | 0.0001 ×10–2 | 0.005 ×10–2 | |
10 | –10.03 | –11.43 | 0.12 ×10–2 | 0.32 ×10–2 | |
0 | –9.92 | –11.50 | 0.28 ×10–2 | 0.12 | |
–10 | –9.87 | –12.27 | 1.28 ×10–2 | 1.65 | |
–20 | –9.82 | –15.13 | 2.43 ×10–2 | 7.16 |
为了验证本文方法的实用性,将其应用于实际的机载SAR数据,该数据(P和L波段)来源于中国科学院电子学研究所于2014年在南海进行的海试实验。为了证明估计结果的准确性,将本文方法与尾迹法的估计结果进行对比。由于尾迹法得到的是舰船的距离向速度,因此需要利用舰船的航向及成像几何关系,根据估计的距离向速度计算舰船的方位向速度。
图5(a)所示的SAR图像获取于2014年11月5日,雷达波段为P波段,平台飞行速度为136 m/s,PRF为1000 Hz。如图5(a)左下角所示,将舰船目标沿方位向分为14个子块,每个子块的方位向长度为128个分辨单元。图5(b)为其中部分子块的归一化功率谱,图5(c)为相邻子块间多普勒中心的变化图,可以看出多普勒中心频率的变化近似为线性。利用2.2节的方法估计出相邻子块数据多普勒中心频率的增量为
下面利用尾迹法估计其运动速度。由于该方法需要确定舰船相对其尾迹顶点在方位向的偏移量,因此需要确定舰船重心的位置,具体做法如下:
(1) 确定舰船所在的区域,并将该区域从SAR图像中分离出来;
(2) 计算该区域的1阶矩(
mpq=∑i∑jipjqf(i,j) | (15) |
(3) 计算舰船的重心位置。舰船重心位置的坐标可以表示为:
采用上述方法确定的舰船重心位置如图5(a)中黑色圆点所示。根据舰船的重心位置,估计出舰船相对其尾迹顶点的方位向偏移量约为190 m,由此可以计算出舰船的距离向速度约为
图6为舰船方位向速度与平台运动方向相同时舰船速度估计结果的示例,该图像获取于2014年9月14日,雷达波段为L波段,平台飞行速度为114 m/s, PRF为900 Hz。如图6(a)右上角所示,将舰船目标沿方位向分为8个子块,相邻子块间的成像时间差为
除上述两个示例之外,本文选取了19个具有明显尾迹特征的舰船目标,分别利用本文方法和尾迹法估计其方位向速度,估计结果的对比如图7所示。可以看到,本文方法与尾迹法获得的舰船速度十分接近。同样,将本文方法估计的速度相对尾迹法的偏差与直接计算调频率获得的速度相对尾迹法的偏差进行了对比,结果如表4所示。可以看出,本文方法的估计结果要优于直接估计调频率获得的结果。
最大偏差(m/s) | 最大相对偏差(%) | 相关系数 | |
本文方法 | 0.87 | 12 | 0.9986 |
调频率法 | 2.30 | 20 | 0.86 |
针对现有舰船速度估计算法一般只能估计舰船距离向速度的问题,本文提出了一种基于SAR图像局域中心频率的舰船方位向速度估计方法。通过对舰船目标在SAR图像局域多普勒中心频率的变化规律以及SAR图像局域方位向功率谱的分析,并采用最大似然估计方法,本文方法能较精确地估计出舰船的方位向速度。仿真结果表明,在不同参数条件下,本文方法的估计误差接近于CRB。同时,对仿真与实测数据的处理结果表明,与直接计算调频率得到的速度相比,本文方法估计的船速具有更高的精度。
分析表明,对于低波段下速度较快的舰船目标,本文方法能较精确地估计出其方位向速度。然而当雷达波段较高、舰船速度较低时,该方法的估计精度不高,且该方法不适用于星载SAR系统。如何提高本文方法对高波段下慢速运动舰船目标速度估计的精度将是下一步的重点研究内容。
[1] |
KREUTZ Diego, RAMOS M V F, VERÍSSIMO P E, et al. Software-defined networking: A comprehensive survey[J]. Proceedings of the IEEE, 2015, 103(1): 14–76. doi: 10.1109/JPROC.2014.2371999
|
[2] |
JAIN S, KUMAR A, MANDAL S, et al. B4: Experience with a globally-deployed software defined WAN[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 3–14. doi: 10.1145/2534169.2486019
|
[3] |
HONG Chiyao, KANDULA S, MAHAJAN R, et al. Achieving high utilization with software-driven WAN[C]. The ACM SIGCOMM 2013 Conference on SIGCOMM, Hong Kong, China, 2013: 15–26.
|
[4] |
First in the U. S. to Mobile 5G – What’s next? Defining AT&T’s network path in 2019 and beyond[EB/OL]. https://about.att.com/story/2019/2019_and_beyond.html, 2019.
|
[5] |
OpenFlow Switch Specification. Version 1.5. 1 (Protocol version 0x06)[EB/OL]. https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf, 2015.
|
[6] |
LEVIN D, WUNDSAM A, HELLER B, et al. Logically centralized?: State distribution trade-offs in software defined networks[C]. The First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 2012: 1–6.
|
[7] |
HELLER B, SHERWOOD R, and MCKEOWN N. The controller placement problem[J]. ACM SIGCOMM Computer Communication Review, 2012, 42(4): 473–478. doi: 10.1145/2377677.2377767
|
[8] |
ONOS controller[EB/OL]. https://onosproject.org/.
|
[9] |
OpenDayLight controller [EB/OL]. https://www.opendaylight.org/.
|
[10] |
ONGARO D and OUSTERHOUT J. In search of an understandable consensus algorithm[C]. The 2014 USENIX conference on USENIX Annual Technical Conference, Philadelphia, USA, 2014: 305–320.
|
[11] |
HOCK D, HARTMANN M, GEBERT S, et al. Pareto-optimal resilient controller placement in SDN-based core networks[C]. The 2013 25th International Teletraffic Congress (ITC), Shanghai, China, 2013: 1–9.
|
[12] |
TANHA M, SAJJADI Dawood, and PAN Jianping. Enduring node failures through resilient controller placement for software defined networks[C]. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, USA, 2016: 1–7.
|
[13] |
TANHA M, SAJJADI D, RUBY R, et al. Capacity-aware and delay-guaranteed resilient controller placement for software-defined WANs[J]. IEEE Transactions on Network and Service Management, 2018, 15(3): 991–1005. doi: 10.1109/TNSM.2018.2829661
|
[14] |
KILLI B P R and RAO S V. Capacitated next controller placement in software defined networks[J]. IEEE Transactions on Network and Service Management, 2017, 14(3): 514–527. doi: 10.1109/TNSM.2017.2720699
|
[15] |
ALSHAMRANI A, GUHA S, PISHARODY S, et al. Fault tolerant controller placement in distributed SDN environments[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–7.
|
[16] |
ALENAZI M J F and ÇETINKAYA E K. Resilient placement of SDN controllers exploiting disjoint paths[J]. Transactions on Emerging Telecommunications Technologies, 2020, 31(2): e3725. doi: 10.1002/ett.3725
|
[17] |
SANTOS D, GOMES T, and TIPPER D. SDN controller placement with availability upgrade under delay and geodiversity constraints[J]. IEEE Transactions on Network and Service Management, 2021, 18(1): 301–314. doi: 10.1109/TNSM.2020.3049013
|
[18] |
YANG Ze and YEUNG K L. SDN candidate selection in hybrid IP/SDN networks for single link failure protection[J]. IEEE/ACM Transactions on Networking, 2020, 28(1): 312–321. doi: 10.1109/TNET.2019.2959588
|
[19] |
高洁, 邬江兴, 胡宇翔, 等. 基于拜占庭容错的软件定义网络控制面的抗攻击性研究[J]. 计算机应用, 2017, 37(8): 2281–2286. doi: 10.11772/j.issn.1001-9081.2017.08.2281
GAO Jie, WU Jiangxing, HU Yuxiang, et al. Research of control plane’ anti-attacking in software-defined network based on Byzantine fault-tolerance[J]. Journal of Computer Applications, 2017, 37(8): 2281–2286. doi: 10.11772/j.issn.1001-9081.2017.08.2281
|
[20] |
XIE Junjie, GUO Deke, QIAN Chen, et al. Validation of distributed SDN control plane under uncertain failures[J]. IEEE/ACM Transactions on Networking, 2019, 27(3): 1234–1247. doi: 10.1109/TNET.2019.2914122
|
[21] |
HU Yannan, WANG Wendong, GONG Xiangyang, et al. On reliability-optimized controller placement for software-defined networks[J]. China Communications, 2014, 11(2): 38–54. doi: 10.1109/CC.2014.6821736
|
[22] |
ZHANG Lingyu, WANG Ying, LI Wenjing, et al. A survivability-based backup approach for controllers in multi-controller SDN against failures[C]. 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), Seoul, Korea (South), 2017: 100–105.
|
[23] |
HU Tao, GUO Zehua, ZHANG Jianhui, et al. Adaptive slave controller assignment for fault-tolerant control plane in software-defined networking[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–6.
|
[24] |
HU Tao, YI Peng, GUO Zehua, et al. Dynamic slave controller assignment for enhancing control plane robustness in software-defined networks[J]. Future Generation Computer Systems, 2019, 95: 681–693. doi: 10.1016/j.future.2019.01.010
|
[25] |
HE Fujun, SATO T, and OKI E. Master and slave controller assignment model against multiple failures in software defined network[C]. ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6.
|
[26] |
HE Fujun and OKI E. Load balancing model against multiple controller failures in software defined networks[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
|
[27] |
HE Fujun and OKI E. Main and secondary controller assignment with optimal priority policy against multiple failures[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4391–4405. doi: 10.1109/TNSM.2021.3064646
|
[28] |
MISRA S, SARKAR K, and AHMED N. Blockchain-based controller recovery in SDN[C]. IEEE INFOCOM 2020 – IEEE IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, Canada, 2020: 1063–1068.
|
[29] |
BASU K, HAMDULLAH A, and BALL F. Architecture of a cloud-based fault-tolerant control platform for improving the QoS of social multimedia applications on SD-WAN[C]. 2020 13th International Conference on Communications (COMM), Bucharest, Romania, 2020: 495–500.
|
[30] |
乐宗港, 黄刘生, 徐宏力. 基于AMQP的SDN控制器故障恢复机制[J]. 通信技术, 2017, 50(3): 487–491. doi: 10.3969/j.issn.1002-0802.2017.03.018
LE Zonggang, HUANG Liusheng, and XU Hongli. Failure recovery mechanism of SDN controller based on AMQP[J]. Communications Technology, 2017, 50(3): 487–491. doi: 10.3969/j.issn.1002-0802.2017.03.018
|
[31] |
REN Xiaodon, AUJLA S G, JINDAL A, et al. Adaptive recovery mechanism for SDN controllers in Edge-Cloud supported FinTech applications[J]. IEEE Internet of Things Journal, 2023, 10(3): 2112–2120. doi: 10.1109/JIOT.2021.3064468
|
[32] |
GUILLEN L, IZUMI S, ABE T, et al. A resilient mechanism for multi-controller failure in hybrid SDN-based networks[C]. 2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS), Tainan, China, 2021: 285–290.
|
[33] |
DHARAM P and DEY M. A mechanism for controller failover in distributed software-defined networks[C]. 2021 8th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 2021: 196–201.
|
[34] |
AÇAN F, GÜR G, and ALAGÖZ F. Reactive controller assignment for failure resilience in software defined networks[C]. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan, 2019: 1–6.
|
[35] |
CHEN Jia, CHEN Shihua, CHENG Xin, et al. A deep reinforcement learning based switch controller mapping strategy in software defined network[J]. IEEE Access, 2020, 8: 221553–221567. doi: 10.1109/ACCESS.2020.3043511
|
[36] |
MOHAN P M, TRUONG-HUU T, and GURUSAMY M. Primary-backup controller mapping for Byzantine fault tolerance in software defined networks[C]. GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, 2017: 1–7.
|
[37] |
GÜNER S, GÜR G, and ALAGÖZ F. Proactive controller assignment schemes in SDN for fast recovery[C]. 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 2020: 136–141.
|
[38] |
MOHAN P M, TRUONG-HUU T, and GURUSAMY M. Byzantine-resilient controller mapping and remapping in software defined networks[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2714–2729. doi: 10.1109/TNSE.2020.2981521
|
[39] |
SRIDHARAN V, GURUSAMY M, and TRUONG-HUU T. On multiple controller mapping in software defined networks with resilience constraints[J]. IEEE Communications Letters, 2017, 21(8): 1763–1766. doi: 10.1109/LCOMM.2017.2696006
|
[40] |
SRIDHARAN V, LIYANAGE K S K, and GURUSAMY M. Privacy-aware switch-controller mapping in SDN-based IoT networks[C]. 2020 International Conference on Communication Systems & NETworkS (COMSNETS), Bengaluru, India, 2020: 1–6.
|
[41] |
AL-TAM F and CORREIA N. On load balancing via switch migration in software-defined networking[J]. IEEE Access, 2019, 7: 95998–96010. doi: 10.1109/ACCESS.2019.2929651
|
[42] |
AL-TAM F and CORREIA N. Fractional switch migration in multi-controller software-defined networking[J]. Computer Networks, 2019, 157: 1–10. doi: 10.1016/j.comnet.2019.04.011
|
[43] |
DOU Songshi, MIAO Guochun, GUO Zehua, et al. Matchmaker: Maintaining network programmability for Software-Defined WANs under multiple controller failures[J]. Computer Networks, 2021, 192: 108045. doi: 10.1016/j.comnet.2021.108045
|
[44] |
GUO Zehua, DOU Songshi, and JIANG Wenchao. Improving the path programmability for software-defined wans under multiple controller failures[C]. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS), Hangzhou, China, 2020: 1–10.
|
[45] |
DOU Songshi, GUO Zehua, and XIA Yuanqing. ProgrammabilityMedic: Predictable path programmability recovery under multiple controller failures in SD-WANs[C]. 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), Washington DC, USA, 2021: 461–471.
|
[46] |
VAN ADRICHEM N L M, DOERR C, and KUIPERS F A. Opennetmon: Network monitoring in openflow software-defined networks[C]. 2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 2014: 1–8.
|
[47] |
TOOTOONCHIAN A, GHOBADI M, and GANJALI Y. OpenTM: Traffic matrix estimator for OpenFlow networks[C]. 11th International Conference on Passive and Active Network Measurement, Zurich, Switzerland, 2010: 201–210.
|
[48] |
XIE Junjie, GUO Deke, LI Xiaozhou, et al. Cutting long-tail latency of routing response in software defined networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 384–396. doi: 10.1109/JSAC.2018.2815358
|
[49] |
YAO Guang, BI Jun, and GUO Luyi. On the cascading failures of multi-controllers in software defined networks[C]. 2013 21st IEEE International Conference on Network Protocols (ICNP), Goettingen, Germany, 2013: 1–2.
|
[50] |
SHERWOOD R, GIBB G, YAP K K, et al. . Flowvisor: A network virtualization layer[R]. OpenFlow Switch Consortium, Tech. Rep, 2009, 1: 132.
|
[51] |
BERA S, MISRA S, and SAHA N. Traffic-aware dynamic controller assignment in SDN[J]. IEEE Transactions on Communications, 2020, 68(7): 4375–4382. doi: 10.1109/TCOMM.2020.2983168
|
[52] |
YANG Xuwei, XU Hongli, CHEN Shigang, et al. Indirect multi-mapping for burstiness management in software defined networks[J]. IEEE/ACM Transactions on Networking, 2021, 29(5): 2059–2072. doi: 10.1109/TNET.2021.3078132
|
[53] |
Brocade MLX-8 Pe[EB/OL]. [2022–03-29]. https://www.dataswitchworks.com/datasheets/MLX_Series_DS.pdf.
|
[54] |
CHN-IX[EB/OL]. [2022–03-29]. http://www.chn-ix.net/.
|
[55] |
XU Hongli, HUANG He, CHEN Shigang, et al. Achieving high scalability through hybrid switching in software-defined networking[J]. IEEE/ACM Transactions on Networking, 2018, 26(1): 618–632. doi: 10.1109/TNET.2018.2789339
|
1. | 姜文,牛杰,吴一戎,梁兴东. 机载多通道SAR运动目标方位向速度和法向速度联合估计算法. 电子与信息学报. 2020(06): 1542-1548 . ![]() |
参数 | 仿真1 | 仿真2 | 仿真3 | 仿真4 | 仿真5 | 仿真6 |
PRF | 500 | 500 | 500 | 500 | 500 | 500 |
Is | 100 | 100 | 100 | 100 | 100 | 100 |
Δfd | 10 | 10 | 10 | 10 | 10 | 1~20 |
N | 13 | 13 | 13 | 13 | 5~50 | 13 |
N′a | 128 | 128 | 128 | 50~500 | 128 | 128 |
L | 10 | 10 | 5~100 | 10 | 10 | 10 |
SCR | 2 | 0~15 | 2 | 2 | 2 | 2 |
SNR | 0~15 | 6 | 6 | 6 | 6 | 6 |
雷达波长(m) | 调频率(Hz/s) | 距离带宽(MHz) | 天线长度(m) | PRF
(Hz) |
平台速度(m/s) | 平台高度(m) | 近端斜距(m) | 信噪比(dB) | 信杂比(dB) | 目标1方位向速度(m/s) | 目标2方位向速度(m/s) | 目标3方位向速度(m/s) |
0.2308 | 2.8e13 | 25 | 4 | 900 | 100 | 8100 | 10000 | 2 | 6 | –10 | –5 | 5 |
SCR(dB) | 均值(m/s) | 方差(m2/s2) | |||
本文方法 | 调频率法 | 本文方法 | 调频率法 | ||
20 | –10.05 | –11.01 | 0.0001 ×10–2 | 0.005 ×10–2 | |
10 | –10.03 | –11.43 | 0.12 ×10–2 | 0.32 ×10–2 | |
0 | –9.92 | –11.50 | 0.28 ×10–2 | 0.12 | |
–10 | –9.87 | –12.27 | 1.28 ×10–2 | 1.65 | |
–20 | –9.82 | –15.13 | 2.43 ×10–2 | 7.16 |
最大偏差(m/s) | 最大相对偏差(%) | 相关系数 | |
本文方法 | 0.87 | 12 | 0.9986 |
调频率法 | 2.30 | 20 | 0.86 |
参数 | 仿真1 | 仿真2 | 仿真3 | 仿真4 | 仿真5 | 仿真6 |
PRF | 500 | 500 | 500 | 500 | 500 | 500 |
Is | 100 | 100 | 100 | 100 | 100 | 100 |
Δfd | 10 | 10 | 10 | 10 | 10 | 1~20 |
N | 13 | 13 | 13 | 13 | 5~50 | 13 |
N′a | 128 | 128 | 128 | 50~500 | 128 | 128 |
L | 10 | 10 | 5~100 | 10 | 10 | 10 |
SCR | 2 | 0~15 | 2 | 2 | 2 | 2 |
SNR | 0~15 | 6 | 6 | 6 | 6 | 6 |
雷达波长(m) | 调频率(Hz/s) | 距离带宽(MHz) | 天线长度(m) | PRF
(Hz) |
平台速度(m/s) | 平台高度(m) | 近端斜距(m) | 信噪比(dB) | 信杂比(dB) | 目标1方位向速度(m/s) | 目标2方位向速度(m/s) | 目标3方位向速度(m/s) |
0.2308 | 2.8e13 | 25 | 4 | 900 | 100 | 8100 | 10000 | 2 | 6 | –10 | –5 | 5 |
SCR(dB) | 均值(m/s) | 方差(m2/s2) | |||
本文方法 | 调频率法 | 本文方法 | 调频率法 | ||
20 | –10.05 | –11.01 | 0.0001 ×10–2 | 0.005 ×10–2 | |
10 | –10.03 | –11.43 | 0.12 ×10–2 | 0.32 ×10–2 | |
0 | –9.92 | –11.50 | 0.28 ×10–2 | 0.12 | |
–10 | –9.87 | –12.27 | 1.28 ×10–2 | 1.65 | |
–20 | –9.82 | –15.13 | 2.43 ×10–2 | 7.16 |
最大偏差(m/s) | 最大相对偏差(%) | 相关系数 | |
本文方法 | 0.87 | 12 | 0.9986 |
调频率法 | 2.30 | 20 | 0.86 |