Citation: | KANG Shouqiang, YANG Jiaxuan, WANG Yujing, WANG Qingyan, LIANG Xintao, . A Fast Classification Method of Rolling Bearing State Under Different Loads Based on Improved Broad Model Transfer Learning[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1824-1832. doi: 10.11999/JEIT220401 |
[1] |
SOHAIB M and KIM J M. Fault diagnosis of rotary machine bearings under inconsistent working conditions[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3334–3347. doi: 10.1109/TIM.2019.2933342
|
[2] |
孙瑾铃, 张伟涛, 楼顺天. 基于等变化自适应源分离算法的滚动轴承故障信号自适应盲提取[J]. 电子与信息学报, 2020, 42(10): 2471–2477. doi: 10.11999/JEJT190722
SUN Jinling, ZHANG Weitao, and LOU Shuntian. Adaptive blind extraction of rolling bearing fault signal based on equivariant adaptive separation via independence[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2471–2477. doi: 10.11999/JEJT190722
|
[3] |
王玉静, 康守强, 张云, 等. 基于集合经验模态分解敏感固有模态函数选择算法的滚动轴承状态识别方法[J]. 电子与信息学报, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434
WANG Yujing, KANG Shouqiang, ZHANG Yun, et al. Condition recognition method of rolling bearing based on ensemble empirical mode decomposition sensitive intrinsic mode function selection algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434
|
[4] |
WANG Jianyu, MO Zhenling, ZHANG Heng, et al. A deep learning method for bearing fault diagnosis based on time-frequency image[J]. IEEE Access, 2019, 7: 42373–42383. doi: 10.1109/ACCESS.2019.2907131
|
[5] |
文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715
WEN Chenglin and LÜ Feiya. Review on deep learning based fault diagnosis[J]. Journal of Electronics &Information Technology, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715
|
[6] |
GAO Shuzhi, XU Lintao, ZHANG Yimin, et al. Rolling bearing fault diagnosis based on intelligent optimized self-adaptive deep belief network[J]. Measurement Science and Technology, 2020, 31(5): 055009. doi: 10.1088/1361-6501/ab50f0
|
[7] |
WANG Huan, LIU Zhiliang, PENG Dandan, et al. Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(9): 5735–5745. doi: 10.1109/TII.2019.2955540
|
[8] |
ZHANG Ran, TAO Hongyang, WU Lifeng, et al. Transfer learning with neural networks for bearing fault diagnosis in changing working conditions[J]. IEEE Access, 2017, 5: 14347–14357. doi: 10.1109/ACCESS.2017.2720965
|
[9] |
康守强, 邢颖怡, 王玉静, 等. 基于无监督深度模型迁移的滚动轴承寿命预测方法[J]. 自动化学报, 待发表.
KANG Shouqiang, XING Yingyi, WANG Yujing, et al. Rolling bearing life prediction based on unsupervised deep model transfer[J]. Acta Automatica Sinica, To be published.
|
[10] |
于洋, 何明, 刘博, 等. 基于TL-LSTM的轴承故障声发射信号识别研究[J]. 仪器仪表学报, 2019, 40(5): 51–59. doi: 10.19650/j.cnki.cjsi.J1904766
YU Yang, HE Ming, LIU Bo, et al. Research on acoustic emission signal recognition of bearing fault based on TL-LSTM[J]. Chinese Journal of Scientific Instrument, 2019, 40(5): 51–59. doi: 10.19650/j.cnki.cjsi.J1904766
|
[11] |
CHEN C L Philip and LIU Zhulin. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10–24. doi: 10.1109/TNNLS.2017.2716952
|
[12] |
FENG Jian, YAO Yu, LU Senxiang, et al. Domain knowledge-based deep-broad learning framework for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3454–3464. doi: 10.1109/TIE.2020.2982085
|
[13] |
FU Yang, CAO Hongrui, and CHEN Xuefeng. Adaptive broad learning system for high-efficiency fault diagnosis of rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1–11. doi: 10.1109/TIM.2021.3085940
|
[14] |
YAN Ruqiang, SHEN Fei, SUN Chuang, et al. Knowledge transfer for rotary machine fault diagnosis[J]. IEEE Sensors Journal, 2020, 20(15): 8374–8393. doi: 10.1109/JSEN.2019.2949057
|
[15] |
YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 3320–3328.
|
[16] |
LOPARO K A. Bearing data center[EB/OL]. https://engineering.case.edu/bearingdatacenter, 2019.
|
[17] |
王玉静, 那晓栋, 康守强, 等. 基于EEMD-Hilbert包络谱和DBN的变负载下滚动轴承状态识别方法[J]. 中国电机工程学报, 2017, 37(23): 6943–6950. doi: 10.13334/j.0258-8013.pcsee.162418
WANG Yujing, NA Xiaodong, KANG Shouqiang, et al. State recognition method of a rolling bearing based on EEMD-Hilbert envelope spectrum and DBN under variable load[J]. Proceedings of the CSEE, 2017, 37(23): 6943–6950. doi: 10.13334/j.0258-8013.pcsee.162418
|
[18] |
KANG Shouqiang, CHEN Weiwei, WANG Yujing, et al. Method of state identification of rolling bearings based on deep domain adaptation under varying loads[J]. IET Science, Measurement & Technology, 2020, 14(3): 303–313. doi: 10.1049/iet-smt.2019.0043
|
[19] |
WANG Yujing, WANG Chao, KANG Shouqiang, et al. Network-combined broad learning and transfer learning: A new intelligent fault diagnosis method for rolling bearings[J]. Measurement Science and Technology, 2020, 31(11): 115013. doi: 10.1088/1361-6501/ab8fee
|
[20] |
BECHHOEFER E. Bearing fault dataset[EB/OL]. https://mfpt.org/fault-data-sets/, 2019.
|