Citation: | SONG Tai, HUANG Zhengfeng, XU Hui. Linear Discriminant Analysis Algorithm for Detecting Hardware Trojans Delay[J]. Journal of Electronics & Information Technology, 2023, 45(1): 59-67. doi: 10.11999/JEIT220389 |
[1] |
AHMED A, FARAHMANDI F, ISKANDER Y, et al. Scalable hardware Trojan activation by interleaving concrete simulation and symbolic execution[C]. Proceedings of 2018 IEEE International Test Conference, Phoenix, USA, 2018: 1–10.
|
[2] |
HAIDER S K, JIN Chenglu, AHMAD M, et al. Advancing the state-of-the-art in hardware Trojans detection[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 16(1): 18–32. doi: 10.1109/TDSC.2017.2654352
|
[3] |
明小满. 中国集成电路的发展现状与发展建议[J]. 通讯世界, 2017(4): 273–274. doi: 10.3969/j.issn.1006-4222.2017.04.200
MING Xiaoman. The development status and development suggestions of China's integrated circuits[J]. Telecom World, 2017(4): 273–274. doi: 10.3969/j.issn.1006-4222.2017.04.200
|
[4] |
ZHOU Bin, ZHANG Wei, THAMBIPILLAI S, et al. Cost-efficient acceleration of hardware Trojan detection through fan-out cone analysis and weighted random pattern technique[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(5): 792–805. doi: 10.1109/TCAD.2015.2460551
|
[5] |
SONG Tai, NI Tianming, HUANG Zhengfeng, et al. Valid test pattern identification for VLSI adaptive test[J]. Integration, 2022, 82: 1–6. doi: 10.1016/j.vlsi.2021.08.009
|
[6] |
CHAKRABORTY R S, NARASIMHAN S, and BHUNIA S. Hardware Trojan: Threats and emerging solutions[C]. Proceedings of 2009 IEEE International High Level Design Validation and Test Workshop, San Francisco, USA, 2009: 166–171.
|
[7] |
SABRI M, SHABANI A, and ALIZADEH B. SAT-based integrated hardware Trojan detection and localization approach through path-delay analysis[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(8): 2850–2854. doi: 10.1109/TCSII.2021.3074549
|
[8] |
许强, 蒋兴浩, 姚立红, 等. 硬件木马检测与防范研究综述[J]. 网络与信息安全学报, 2017, 3(4): 1–13. doi: 10.11959/j.issn.2096-109x.2017.00160
XU Qiang, JIANG Xinghao, YAO Lihong, et al. Overview of the detection and prevention study of hardware Trojans[J]. Chinese Journal of Network and Information Security, 2017, 3(4): 1–13. doi: 10.11959/j.issn.2096-109x.2017.00160
|
[9] |
尹勇生, 汪涛, 陈红梅, 等. 硬件木马技术研究进展[J]. 微电子学, 2017, 47(2): 233–238. doi: 10.13911/j.cnki.1004-3365.2017.02.021
YIN Yongsheng, WANG Tao, CHEN Hongmei, et al. Study on hardware Trojan technology[J]. Microelectronics, 2017, 47(2): 233–238. doi: 10.13911/j.cnki.1004-3365.2017.02.021
|
[10] |
李莹, 陈岚, 佟鑫. 指令级功耗特征的硬件木马检测高效机器学习(英文)[J]. 中国科学院大学学报, 2021, 38(4): 494–502. doi: 10.7523/j.issn.2095-6134.2021.04.008
LI Ying, CHEN Lan, and TONG Xin. Efficient machine learning methods for hardware Trojan detection using instruction-level power character[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(4): 494–502. doi: 10.7523/j.issn.2095-6134.2021.04.008
|
[11] |
HU Wei, CHANG C H, SENGUPTA A, et al. An overview of hardware security and trust: Threats, countermeasures, and design tools[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(6): 1010–1038. doi: 10.1109/TCAD.2020.3047976
|
[12] |
倪林, 李少青, 马瑞聪, 等. 硬件木马检测与防护[J]. 数字通信, 2014, 41(1): 59–63,68. doi: 10.3969/j.issn.1005-3824.2014.01.016
NI Lin, LI Shaoqing, MA Ruicong, et al. Hardware Trojans detection and protection[J]. Digital Communication, 2014, 41(1): 59–63,68. doi: 10.3969/j.issn.1005-3824.2014.01.016
|
[13] |
詹慕文. 基于衬底电流传感器的安全芯片防激光错误注入攻击研究[D]. [硕士论文], 湖北大学, 2021.
ZHAN Muwen. Research on the security chip based on bulk current sensor against laser fault injection attack[D]. [Master dissertation], Hubei University, 2021.
|
[14] |
李雄伟, 徐璐, 张阳, 等. 面向硬件木马检测的旁路信号特征选择方法[J]. 计算机工程与应用, 2017, 53(21): 258–262. doi: 10.3778/j.issn.1002-8331.1605-0149
LI Xiongwei, XU Lu, ZHANG Yang, et al. Side channel signals feature selection method oriented to hardware Trojan detection[J]. Computer Engineering and Applications, 2017, 53(21): 258–262. doi: 10.3778/j.issn.1002-8331.1605-0149
|
[15] |
SHENDE R and AMBAWADE D D. A side channel based power analysis technique for hardware Trojan detection using statistical learning approach[C]. Proceedings of the 2016 13th International Conference on Wireless and Optical Communications Networks, Hyderabad, India, 2016: 1–4.
|
[16] |
SALMANI H. Gradual-N-justification (GNJ) to reduce false-positive hardware Trojan detection in gate-level netlist[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(4): 515–525. doi: 10.1109/TVLSI.2022.3143349
|
[17] |
NGUYEN L N, YILMAZ B B, PRVULOVIC M, et al. A novel golden-chip-free clustering technique using backscattering side channel for hardware Trojan detection[C]. Proceedings of 2020 IEEE International Symposium on Hardware Oriented Security and Trust, San Jose, USA, 2020: 1–12.
|
[18] |
STERN A, MEHTA D, TAJIK S, et al. SPARTA: A laser probing approach for Trojan detection[C]. Proceedings of 2020 IEEE International Test Conference, Washington, USA, 2020: 1–10.
|
[19] |
KURIHARA T, HASEGAWA K, and TOGAWA N. Evaluation on hardware-Trojan detection at gate-level IP cores utilizing machine learning methods[C]. Proceedings of the 2020 IEEE 26th International Symposium on On-Line Testing and Robust System Design, Napoli, Italy, 2020: 1–4.
|