Advanced Search
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
JIANG Fan, LIANG Xiao, SUN Changyin, WANG Junxuan. Caching and Update Strategy Based on Content Popularity and Information Freshness for Fog Radio Access Networks[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3108-3116. doi: 10.11999/JEIT220373
Citation: JIANG Fan, LIANG Xiao, SUN Changyin, WANG Junxuan. Caching and Update Strategy Based on Content Popularity and Information Freshness for Fog Radio Access Networks[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3108-3116. doi: 10.11999/JEIT220373

Caching and Update Strategy Based on Content Popularity and Information Freshness for Fog Radio Access Networks

doi: 10.11999/JEIT220373
Funds:  The National Natural Science Foundation of China (62071377, 62101442), Shaanxi Province Key Industry Innovation Chain (Group) (2019ZDLGY07-06), The Graduate Student Innovation Foundation Project of Xi’an University of Posts and Telecommunications (CXJJYL2021063)
  • Received Date: 2022-03-31
  • Accepted Date: 2022-08-05
  • Rev Recd Date: 2022-08-04
  • Available Online: 2022-08-09
  • Publish Date: 2022-09-19
  • Introducing edge caching into fog radio access networks can effectively reduce the redundancy of content transmission. However, the existing content caching strategies consider rarely the dynamic nature of already cached content. A caching update algorithm based on content popularity and information freshness is proposed. The proposed algorithm considers fully the mobility of users and the temporal and spatial dynamics of content popularity. Furthermore, the Age of Information (AoI) is introduced to achieve a dynamic content update procedure. More specifically, the proposed algorithm adopts initially a Bidirectional Long Short-Term Memory network (Bi-LSTM) to predict the user's location in the next period according to the user's historical location information. Secondly, according to the acquired user location, combined with the user's preference model, the content popularity of each location area is obtained accordingly, and the most popular content will be cached at the Fog Access Points(F-APs). Finally, concerning AoI requirements of the already cached content, the caching update window can be dynamically adjusted to achieve a high-efficient and low-latency caching process. Simulation results demonstrate that the proposed algorithm improves effectively the content cache hit rate, and also minimizes the average delay of content transmission while ensuring the timeliness of the information.
  • loading
  • [1]
    ZENG Ming, LIN T H, CHEN Min, et al. Temporal-spatial mobile application usage understanding and popularity prediction for edge caching[J]. IEEE Wireless Communications, 2018, 25(3): 36–42. doi: 10.1109/MWC.2018.1700330
    [2]
    中华人民共和国工业和信息化部. 2021年通信业统计公报[R]. 2022.

    Ministry of Industry and Information Technology. 2021 communications industry statistical bulletin[R]. 2022.
    [3]
    ZEYDAN E, BASTUG E, BENNIS M, et al. Big data caching for networking: Moving from cloud to edge[J]. IEEE Communications Magazine, 2016, 54(9): 36–42.
    [4]
    YATES R D, SUN Yin, BROWN D R, et al. Age of information: An introduction and survey[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(5): 1183–1210. doi: 10.1109/JSAC.2021.3065072
    [5]
    BASTOPCU M and ULUKUS S. Information freshness in cache updating systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1861–1874. doi: 10.1109/TWC.2020.3037144
    [6]
    KAM C, KOMPELLA S, NGUYEN G D, et al. Information freshness and popularity in mobile caching[C]. 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 136–140. doi: 10.1109/ISIT.2017.8006505.
    [7]
    WANG Xiaofei, CHEN Min, TALEB T, et al. Cache in the air: Exploiting content caching and delivery techniques for 5G systems[J]. IEEE Communications Magazine, 2014, 52(2): 131–139. doi: 10.1109/MCOM.2014.6736753
    [8]
    ZHANG Min, JIANG Yanxiang, ZHENG Fuchun, et al. Cooperative edge caching via federated deep reinforcement learning in fog-RANs[C]. 2021 IEEE International Conference on Communications Workshops, Montreal, Canada, 2021: 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473609.
    [9]
    ZHANG Yuming, FENG Bohao, Quan Wei, et al. Cooperative edge caching: A multi-agent deep learning based approach[J]. IEEE Access, 2020, 8: 133212–133224. doi: 10.1109/ACCESS.2020.3010329
    [10]
    JIANG Yanxiang, FENG Haojie, ZHENG Fuchun, et al. Deep learning-based edge caching in fog radio access networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 8442–8454. doi: 10.1109/TWC.2020.3022907
    [11]
    GOODFELLOW L, BENGIO Y, and COURVILLE A. Deep Learning[M]. Cambridge: The MIT Press, 2016.
    [12]
    BARTLETT P L, HAZAN E, and RAKHLIN A. Adaptive online gradient descent[C]. The 20th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 65–72.
    [13]
    JIANG Yanxiang, MA Miaoli, BENNIS M, et al. User preference learning-based edge caching for fog radio access network[J]. IEEE Transactions on Communications, 2019, 67(2): 1268–1283. doi: 10.1109/TCOMM.2018.2880482
    [14]
    JIANG Fan, ZHANG Xiaoli, and SUN Changyin. A D2D-enabled cooperative caching strategy for fog radio access networks[C]. The 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 2020: 1–6. doi: 10.1109/PIMRC48278.2020.9217190.
    [15]
    ANDREWS J G, BACCELLI F, and GANTI R K. A tractable approach to coverage and rate in cellular networks[J]. IEEE Transactions on Communications, 2011, 59(11): 3122–3134. doi: 10.1109/TCOMM.2011.100411.100541
    [16]
    ZHANG Shan, WANG Liudi, LUO Hongbin, et al. AoI-delay tradeoff in mobile edge caching with freshness-aware content refreshing[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 5329–5342. doi: 10.1109/TWC.2021.3067002
    [17]
    Stanford University. Stanford university mobile activity TRAces (SUMATRA)[EB/OL]. http://infolab.stanford.edu/pleiades/SUMATRA.html, 2022.
    [18]
    TRZCIŃSKI T and ROKITA P. Predicting popularity of online videos using support vector regression[J]. IEEE Transactions on Multimedia, 2017, 19(11): 2561–2570. doi: 10.1109/TMM.2017.2695439
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (495) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return