Advanced Search
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
HAO Min, YE Dongdong, YU Rong, WANG Jingyu, LIAO Jianxin. Blockchain Empowered Trustworthy Access Scheme for 6G Zero-trust Vehicular Networks[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3004-3013. doi: 10.11999/JEIT220370
Citation: HAO Min, YE Dongdong, YU Rong, WANG Jingyu, LIAO Jianxin. Blockchain Empowered Trustworthy Access Scheme for 6G Zero-trust Vehicular Networks[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3004-3013. doi: 10.11999/JEIT220370

Blockchain Empowered Trustworthy Access Scheme for 6G Zero-trust Vehicular Networks

doi: 10.11999/JEIT220370
Funds:  The National Key R&D Program of China (2020YFB1807802)
  • Received Date: 2022-03-31
  • Rev Recd Date: 2022-06-20
  • Available Online: 2022-06-24
  • Publish Date: 2022-09-19
  • 6G networks will bring the new paradigm of ubiquitous intelligence and on-demand services in all scenarios, in which trustworthy and reliable network services become key technical indicators. Facing the communication requirements in the 6G zero-trust environment, the blockchain is used as a "trust bridge", and the trusted and reliable access management scheme of the 6G in-vehicle network is studied in this paper. Firstly, a zero-knowledge authentication algorithm based on quadratic residual is used to complete the mutual authentication and authorization between the base station and the vehicle without exposing the privacy of the vehicle. Then, in order to improve the verification efficiency and save the energy consumption of the base station, a road redundant computing power incentive model based on the contract theory is established, and part of the verification tasks of the base station are allocated to edge servers or parked vehicles and given corresponding rewards. Finally, a 6G zero-trust network architecture of vehicle based on two-tiered blockchain is established. The primary chain maintained by the base stations and the secondary chain maintained by the edge computing nodes are used to record the important parameters of the identity verification of the vehicular networks, so as to meet the requirement of trustworthy access in the zero-trust environment. Compared to the existing baseline approaches, the proposed scheme improves significantly the vehicle verification efficiency and reduces the energy consumption of the base station without revealing the privacy of the vehicles.
  • loading
  • [1]
    RASHEED A A, MAHAPATRA R N, and HAMZA-LUP F G. Adaptive group-based zero knowledge proof-authentication protocol in vehicular Ad Hoc networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(2): 867–881. doi: 10.1109/TITS.2019.2899321
    [2]
    RASHEED A A, MAHAPATRA R N, VAROL C, et al. Exploiting zero knowledge proof and Blockchain towards the enforcement of anonymity, data integrity and privacy (ADIP) on IoT[J]. IEEE Transactions on Emerging Topics in Computing, To be published.
    [3]
    LIN Wanxue, ZHANG Xuefei, CUI Qimei, et al. Blockchain based unified authentication with zero-knowledge proof in heterogeneous MEC[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6.
    [4]
    刘雪艳, 王力, 郇丽娟, 等. 车联网环境下无证书匿名认证方案[J]. 电子与信息学报, 2022, 44(1): 295–304. doi: 10.11999/JEIT201069

    LIU Xueyan, WANG Li, HUAN Lijuan, et al. Certificateless anonymous authentication scheme for internet of vehicles[J]. Journal of Electronics &Information Technology, 2022, 44(1): 295–304. doi: 10.11999/JEIT201069
    [5]
    FENG Xia, SHI Qichen, XIE Qingqing, et al. P2BA: A privacy-preserving protocol with batch authentication against semi-trusted RSUs in vehicular Ad Hoc networks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3888–3899. doi: 10.1109/TIFS.2021.3098971
    [6]
    SONG Jian, HARN P W, SAKAI K, et al. An RFID zero-knowledge authentication protocol based on quadratic residues[J]. IEEE Internet of Things Journal, 2021, 9(4): 12813–12824. doi: 10.1109/JIOT.2021.3138557
    [7]
    ROSE S, BORCHERT O, MITCHELL S, et al. Zero trust architecture[R]. NIST SP-800-207, 2020.
    [8]
    TEERAKANOK S, UEHARA T, and INOMATA A. Migrating to zero trust architecture: Reviews and challenges[J]. Security and Communication Networks, 2021, 2021: 9947347. doi: 10.1155/2021/9947347
    [9]
    CHEN Baozhan, QIAO Siyuan, ZHAO Jie, et al. A security awareness and protection system for 5G smart healthcare based on zero-trust architecture[J]. IEEE Internet of Things Journal, 2021, 8(13): 10248–10263. doi: 10.1109/JIOT.2020.3041042
    [10]
    SHAH S W, SYED N F, SHAGHAGHI A, et al. LCDA: Lightweight continuous device-to-device authentication for a zero trust architecture (ZTA)[J]. Computers & Security, 2021, 108: 102351. doi: 10.1016/j.cose.2021.102351
    [11]
    LIU Yizhi, HAO Xiaohan, REN Wei, et al. A blockchain-based decentralized, fair and authenticated information sharing scheme in zero trust internet-of-things[J]. IEEE Transactions on Computers, To be published.
    [12]
    中国信息通信研究院, 奇安信科技集团股份有限公司. 零信任技术[R]. 2020.

    China Academy of Information and Communications Technology, QI-ANXIN Technology Group Inc. Zero-Trust Technology[R]. 2020.
    [13]
    中国信息通信研究院云计算与大数据研究所, 腾讯云计算(北京)有限公司. 数字化时代-零信任安全蓝皮报告[R]. 2021.

    Institute of Cloud Computing and Big Data, China Academy of Information and Communication Technology, Tencent Cloud Computing (Beijing) Co.LTD. The Digital Age - Zero Trust Security Blue Report [R].2021.
    [14]
    BHARGAVA A, VERMA S, CHAURASIA B K, et al. Computational trust model for Internet of Vehicles[C]. 2017 Conference on Information and Communication Technology (CICT), Gwalior, India, 2017: 1–5.
    [15]
    HAO Min, YE Dongdong, WANG Siming, et al. URLLC resource slicing and scheduling for trustworthy 6G vehicular services: A federated reinforcement learning approach[J]. Physical Communication, 2021, 49: 101470. doi: 10.1016/j.phycom.2021.101470
    [16]
    GOLDWASSER S, MICALI S, and RACKOFF C. The knowledge complexity of interactive proof systems[J]. SIAM Journal on Computing, 1989, 18(1): 186–208. doi: 10.1137/0218012
    [17]
    BLUM M, DE SANTIS A, MICALI S, et al. Noninteractive zero-knowledge[J]. SIAM Journal on Computing, 1991, 20(6): 1084–1118. doi: 10.1137/0220068
    [18]
    清华大学智能产业研究院, 百度Apollo. 面向自动驾驶的车路协同关键技术与展望[R]. 2021.

    Institute of Intelligent Industry, Tsinghua University, Baidu Apollo. Key Technologies and Prospects of Vehicle-Road Cooperation for Autonomous Driving [R]. 2021.
    [19]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 32918.1-2016 信息安全技术 SM2椭圆曲线公钥密码算法 第1部分: 总则[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 32918.1-2016 Information security technology-public key cryptographic algorithm SM2 based on elliptic curves-Part 1: General[S]. Beijing: Standards Press of China, 2017.
    [20]
    WANG Siming, HUANG Xumin, YU Rong, et al. Permissioned blockchain for efficient and secure resource sharing in vehicular edge computing[J]. arXiv: 1906.06319, 2019.
    [21]
    HUANG Xumin, YU Rong, YE Dongdong, et al. Efficient workload allocation and user-centric utility maximization for task scheduling in collaborative vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3773–3787. doi: 10.1109/TVT.2021.3064426
    [22]
    LIANG Jinwen, QIN Zheng, XIAO Sheng, et al. Efficient and secure decision tree classification for cloud-assisted online diagnosis services[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(4): 1632–1644. doi: 10.1109/TDSC.2019.2922958
    [23]
    ZHOU Zhenyu, LIAO Haijun, ZHAO Xiongwen, et al. Reliable task offloading for vehicular fog computing under information asymmetry and information uncertainty[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8322–8335. doi: 10.1109/TVT.2019.2926732
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (1523) PDF downloads(282) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return