Citation: | XUE Chengcheng, GAO Caixia, HU Jian, QIU Shi, WANG Qi. Marine Boat Lights Detection Method Based on Sparse Representation for Low Light Remote Sensing Images During Night[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1747-1757. doi: 10.11999/JEIT220369 |
[1] |
CROFT T A. Nighttime images of the earth from space[J]. Scientific American, 1978, 239(1): 86–98. doi: 10.1038/scientificamerican0778-86
|
[2] |
ELVIDGE C D, CINZANO P, PETTIT D R, et al. The Nightsat mission concept[J]. International Journal of Remote Sensing, 2007, 28(12): 2645–2670. doi: 10.1080/01431160600981525
|
[3] |
ELVIDGE C D, BAUGH K E, ZHIZHIN M, et al. Why VIIRS data are superior to DMSP for mapping nighttime lights[J]. Proceedings of the Asia-Pacific Advanced Network, 2013, 35: 62–69. doi: 10.7125/APAN.35.7
|
[4] |
SCHUELER C F, LEE T F, and MILLER S D. VIIRS constant spatial-resolution advantages[J]. International Journal of Remote Sensing, 2013, 34(16): 5761–5777. doi: 10.1080/01431161.2013.796102
|
[5] |
MILLER S D, MILLS S P, ELVIDGE C D, et al. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): 15706–15711. doi: 10.1073/pnas.1207034109
|
[6] |
MAN D C, TSUBASA H, and FUKUI H. Normalization of VIIRS DNB images for improved estimation of socioeconomic indicators[J]. International Journal of Digital Earth, 2021, 14(5): 540–554. doi: 10.1080/17538947.2020.1849438
|
[7] |
RYBNIKOVA N. Everynight accounting: Nighttime lights as a proxy for economic performance of regions[J]. Remote Sensing, 2022, 14(4): 825. doi: 10.3390/rs14040825
|
[8] |
SUDALAYANDI R S, SRINIVASAN E, and KASARAGOD G R. Urban growth analysis of Tamil Nadu state, India using VIIRS DNB night data during 2012 and 2016[J]. Remote Sensing Applications:Society and Environment, 2021, 23: 100559. doi: 10.1016/j.rsase.2021.100559
|
[9] |
RUAN Yuling, ZOU Yanhong, CHEN Minghui, et al. Monitoring the spatiotemporal trajectory of urban area hotspots using the SVM regression method based on NPP-VIIRS imagery[J]. ISPRS International Journal of Geo-Information, 2021, 10(6): 415. doi: 10.3390/ijgi10060415
|
[10] |
ZHOU Meng, WANG Jun, CHEN Xi, et al. Nighttime smoke aerosol optical depth over U. S. rural areas: First retrieval from VIIRS moonlight observations[J]. Remote Sensing of Environment, 2021, 267: 112717. doi: 10.1016/j.rse.2021.112717
|
[11] |
KOCIFAJ M and BARÁ S. Diffuse light around cities: New perspectives in satellite remote sensing of nighttime aerosols[J]. Atmospheric Research, 2022, 266: 105969. doi: 10.1016/j.atmosres.2021.105969
|
[12] |
LI Jiajun, CAI Yancong, ZHANG Peng, et al. Satellite observation of a newly developed light-fishing “hotspot” in the open South China Sea[J]. Remote Sensing of Environment, 2021, 256: 112312. doi: 10.1016/j.rse.2021.112312
|
[13] |
TIAN Hao, LIU Yang, TIAN Yongjun, et al. A comprehensive monitoring and assessment system for multiple fisheries resources in the Northwest Pacific based on satellite remote sensing technology[J]. Frontiers in Marine Science, 2022, 9: 808282. doi: 10.3389/fmars.2022.808282
|
[14] |
LIU Yang, SAITOH S I, and HIRAWAKE T. Detection of squid and pacific saury fishing vessels around Japan using VIIRS Day/Night Band image[J]. Proceedings of the Asia-Pacific Advanced Network, 2015, 39: 28–39. doi: 10.7125/apan.39.3
|
[15] |
STRAKA III W C, SEAMAN C J, BAUGH K, et al. Utilization of the Suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band for arctic ship tracking and fisheries management[J]. Remote Sensing, 2015, 7(1): 971–989. doi: 10.3390/rs70100971
|
[16] |
ELVIDGE C D, ZHIZHIN M, BAUGH K, et al. Automatic boat identification system for VIIRS low light imaging data[J]. Remote Sensing, 2015, 7(3): 3020–3036. doi: 10.3390/rs70303020
|
[17] |
COZZOLINO E and LASTA C A. Use of VIIRS DNB satellite images to detect jigger ships involved in the Illex argentinus fishery[J]. Remote Sensing Applications:Society and Environment, 2016, 4: 167–178. doi: 10.1016/j.rsase.2016.09.002
|
[18] |
LEBONA B, KLEYNHANS W, CELIK T, et al. Ship detection using VIIRS sensor specific data[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1245–1247.
|
[19] |
郭刚刚, 樊伟, 薛嘉伦, 等. 基于NPP/VIIRS夜光遥感影像的作业灯光围网渔船识别[J]. 农业工程学报, 2017, 33(10): 245–251. doi: 10.11975/j.issn.1002-6819.2017.10.032
GUO Ganggang, FAN Wei, XUE Jialun, et al. Identification for operating pelagic light-fishing vessels based on NPP/VIIRS low light imaging data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 245–251. doi: 10.11975/j.issn.1002-6819.2017.10.032
|
[20] |
黄明晶, 王雪梅, 蹇渊, 等. 基于海天线提取和混合灰度差的船舶检测方法[J]. 红外, 2021, 42(6): 29–33. doi: 10.3969/j.issn.1672-8785.2021.06.006
HUANG Mingjing, WANG Xuemei, JIAN Yuan, et al. Ship detection method based on sea-sky line extraction and mixed gray difference[J]. Infrared, 2021, 42(6): 29–33. doi: 10.3969/j.issn.1672-8785.2021.06.006
|
[21] |
QI Shengxiang, MA Jie, LIN Jin, et al. Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1451–1455. doi: 10.1109/LGRS.2015.2408355
|
[22] |
ZHANG Xiangrong, WANG Guanchun, ZHU Peng, et al. GRS-Det: An anchor-free rotation ship detector based on Gaussian-mask in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3518–3531. doi: 10.1109/TGRS.2020.3018106
|
[23] |
SCHWEGMANN C P, KLEYNHANS W, and SALMON B P. Synthetic aperture radar ship detection using Haar-like features[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2): 154–158. doi: 10.1109/LGRS.2016.2631638
|
[24] |
CORBANE C, MARRE F, and PETIT M. Using SPOT-5 HRG data in panchromatic mode for operational detection of small ships in tropical area[J]. Sensors, 2008, 8(5): 2959–2973. doi: 10.3390/s8052959
|
[25] |
JIANG Mingzhe, YANG Xuezhi, DONG Zhanyu, et al. Ship classification based on superstructure scattering features in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 616–620. doi: 10.1109/LGRS.2016.2514482
|
[26] |
XU Fang, LIU Jinghong, DONG Chao, et al. Ship detection in optical remote sensing images based on wavelet transform and multi-level false alarm identification[J]. Remote Sensing, 2017, 9(10): 985. doi: 10.3390/rs9100985
|
[27] |
AI Jiaqiu, MAO Yuxiang, LUO Qiwu, et al. Robust CFAR ship detector based on bilateral-trimmed-statistics of complex ocean scenes in SAR imagery: A closed-form solution[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1872–1890. doi: 10.1109/TAES.2021.3050654
|
[28] |
AI Jiaqiu, LUO Qiwu, YANG Xuezhi, et al. Outliers-robust CFAR detector of Gaussian clutter based on the truncated-maximum-likelihood-estimator in SAR imagery[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 2039–2049. doi: 10.1109/TITS.2019.2911692
|
[29] |
JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20892. doi: 10.1109/ACCESS.2018.2825376
|
[30] |
TANG Jiexiong, DENG Chenwei, HUANG Guangbin, et al. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1174–1185. doi: 10.1109/TGRS.2014.2335751
|
[31] |
LIU Qiangwei, XIANG Xiuqiao, YANG Zhou, et al. Arbitrary direction ship detection in remote-sensing images based on multitask learning and multiregion feature fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1553–1564. doi: 10.1109/TGRS.2020.3002850
|
[32] |
AI Jiaqiu, TIAN Ruitian, LUO Qiwu, et al. Multi-scale rotation-invariant Haar-like feature integrated CNN-based ship detection algorithm of multiple-target environment in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10070–10087. doi: 10.1109/TGRS.2019.2931308
|
[33] |
AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199
|
[34] |
LI Jin, PENG Yiqun, TANG Jingtian, et al. Denoising of magnetotelluric data using K‐SVD dictionary training[J]. Geophysical Prospecting, 2021, 69(2): 448–473. doi: 10.1111/1365-2478.13058
|
[35] |
FENG Deshan, LIU Shuo, YANG Jun, et al. The noise attenuation and stochastic clutter removal of ground penetrating radar based on the K-SVD dictionary learning[J]. IEEE Access, 2021, 9: 74879–74890. doi: 10.1109/ACCESS.2021.3081349
|
[36] |
CANDÈS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted ℓ1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877–905. doi: 10.1007/s00041-008-9045-x
|
[37] |
O'GRADY P D, PEARLMUTTER B A, and RICKARD S T. Survey of sparse and non‐sparse methods in source separation[J]. International Journal of Imaging Systems and Technology, 2005, 15(1): 18–33. doi: 10.1002/ima.20035
|
[38] |
HURLEY N and RICKARD S. Comparing measures of sparsity[J]. IEEE Transactions on Information Theory, 2009, 55(10): 4723–4741. doi: 10.1109/TIT.2009.2027527
|
[39] |
KARVANEN J and CICHOCKI A. Measuring sparseness of noisy signals[C]. 4th International Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, 2003: 125–130.
|
[40] |
ELVIDGE C D, GHOSH T, BAUGH K, et al. Rating the effectiveness of fishery closures with visible infrared imaging radiometer suite boat detection data[J]. Frontiers in Marine Science, 2018, 5: 132. doi: 10.3389/fmars.2018.00132
|