Citation: | LIU Xia, LÜ Zhiwei, LI Bo, WANG Bo, WANG Di. Segmentation Algorithm of Breast Tumor in Dynamic Contrast-Enhanced Magnetic Resonance Imaging Based on Network with Multi-scale Residuals and Dual-domain Attention[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1774-1785. doi: 10.11999/JEIT220362 |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer Journal for Clinicians, 2021, 71(3): 209–249. doi: 10.3322/caac.21660
|
[2] |
WILD C P, WEIDERPASS E, STEWART B W, et al. World Cancer Report: Cancer Research for Cancer Prevention[M]. Lyon: IARC Press, 2020: 25–27.
|
[3] |
ROMEO V, CAVALIERE C, IMBRIACO M, et al. Tumor segmentation analysis at different post-contrast time points: A possible source of variability of quantitative DCE-MRI parameters in locally advanced breast cancer[J]. European Journal of Radiology, 2020, 126: 108907. doi: 10.1016/j.ejrad.2020.108907
|
[4] |
WANG Shuai, SUN Kun, WANG Li, et al. Breast tumor segmentation in DCE-MRI with tumor sensitive synthesis[J/OL]. IEEE Transactions on Neural Networks and Learning Systems, 2021.
|
[5] |
CARVALHO E D, SILVA R R V, MATHEW M J, et al. Tumor segmentation in breast DCE-MRI slice using deep learning methods[C]. 2021 IEEE Symposium on Computers and Communications (ISCC), Athens, Greece, 2021: 1–6.
|
[6] |
ZHANG Jun, SAHA A, ZHU Zhe, et al. Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics[J]. IEEE Transactions on Medical Imaging, 2019, 38(2): 435–447. doi: 10.1109/TMI.2018.2865671
|
[7] |
MENCATTINI A, RABOTTINO G, SALMERI M, et al. Breast mass segmentation in mammographic images by an effective region growing algorithm[C]. 10th International Conference on Advanced Concepts for Intelligent Vision Systems, Juan-les-Pins, France, 2008: 948–957.
|
[8] |
SHAN Juan, CHENG Hengda, and WANG Yuxuan. A novel automatic seed point selection algorithm for breast ultrasound images[C]. IEEE 2008 19th International Conference on Pattern Recognition (ICPR), Tampa, USA, 2008: 1–4.
|
[9] |
PRAKASH R M, BHUVANESHWARI K, DIVYA M, et al. Segmentation of thermal infrared breast images using K-means, FCM and EM algorithms for breast cancer detection[C]. 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 2017: 1–4.
|
[10] |
LIU Hui, LIU Yiping, ZHAO Zuowei, et al. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI[J]. Medical Physics, 2014, 41(8): 082303. doi: 10.1118/1.4886295
|
[11] |
ZHOU Zhuhuang, WU Weiwei, WU Shuicai, et al. Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts[J]. Ultrasonic Imaging, 2014, 36(4): 256–276. doi: 10.1177/0161734614524735
|
[12] |
LIU Liangliang, CHENG Jianhong, QUAN Quan, et al. A survey on U-shaped networks in medical image segmentations[J]. Neurocomputing, 2020, 409: 244–258. doi: 10.1016/j.neucom.2020.05.070
|
[13] |
AL-FARIS A Q, NGAH U K, ISA N A M, et al. Breast MRI tumour segmentation using modified automatic seeded region growing based on particle swarm optimization image clustering[M]. SNÁŠEL V, KRÖMER P, KÖPPEN M, et al. Soft Computing in Industrial Applications. Cham: Springer, 2014: 49–60.
|
[14] |
CHAKRABORTY J, MUKHOPADHYAY S, SINGLA V, et al. Detection of masses in mammograms using region growing controlled by multilevel thresholding[C]. 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), Rome, Italy, 2012: 1–6.
|
[15] |
SHARMA J, RAI J K, and TEWARI R P. A combined watershed segmentation approach using K-means clustering for mammograms[C]. 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2015: 109–113.
|
[16] |
冯宝, 陈业航, 刘壮盛, 等. 结合MRF能量和模糊速度的乳腺癌图像分割方法[J]. 自动化学报, 2020, 46(6): 1188–1199. doi: 10.16383/j.aas.c180759
FENG Bao, CHEN Yehang, LIU Zhuangsheng, et al. Segmentation of breast cancer on DCE-MRI images with MRF energy and fuzzy speed function[J]. Acta Automatica Sinica, 2020, 46(6): 1188–1199. doi: 10.16383/j.aas.c180759
|
[17] |
XIAN Min, ZHANG Yingtao, CHENG H D, et al. Automatic breast ultrasound image segmentation: A survey[J]. Pattern Recognition, 2018, 79: 340–355. doi: 10.1016/j.patcog.2018.02.012
|
[18] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[19] |
ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867. doi: 10.1109/TMI.2019.2959609
|
[20] |
SCHLEMPER J, OKTAY O, SCHAAP M, et al. Attention gated networks: Learning to leverage salient regions in medical images[J]. Medical Image Analysis, 2019, 53: 197–207. doi: 10.1016/j.media.2019.01.012
|
[21] |
HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. UNet 3+: A full-scale connected UNet for medical image segmentation[C]. ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 1055–1059.
|
[22] |
FENG Shuanglang, ZHAO Heming, SHI Fei, et al. CPFNet: Context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008–3018. doi: 10.1109/TMI.2020.2983721
|
[23] |
BENJELLOUN M, EL ADOUI M, LARHMAM M A, et al. Automated breast tumor segmentation in DCE-MRI using deep learning[C]. 2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech), Brussels, Belgium, 2018: 1–6.
|
[24] |
JIAO Han, JIANG Xinhua, PANG Zhiyong, et al. Deep convolutional neural networks-based automatic breast segmentation and mass detection in DCE-MRI[J]. Computational and Mathematical Methods in Medicine, 2020, 2020: 2413706. doi: 10.1155/2020/2413706
|
[25] |
WANG Hongyu, CAO Jiaqi, FENG Jun, et al. Mixed 2D and 3D convolutional network with multi-scale context for lesion segmentation in breast DCE-MRI[J]. Biomedical Signal Processing and Control, 2021, 68: 102607. doi: 10.1016/j.bspc.2021.102607
|
[26] |
SINGH V K, ABDEL-NASSER M, AKRAM F, et al. Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework[J]. Expert Systems with Applications, 2020, 162: 113870. doi: 10.1016/j.eswa.2020.113870
|