Advanced Search
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
SUN Junmei, PAN Zhenxiong, LI Xiumei, YUAN Long, ZHANG Xin. Transferable Adversarial Example Generation Method For Face Verification[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1842-1851. doi: 10.11999/JEIT220358
Citation: SUN Junmei, PAN Zhenxiong, LI Xiumei, YUAN Long, ZHANG Xin. Transferable Adversarial Example Generation Method For Face Verification[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1842-1851. doi: 10.11999/JEIT220358

Transferable Adversarial Example Generation Method For Face Verification

doi: 10.11999/JEIT220358
Funds:  The National Natural Science Foundation of China (61801159, 61571174), The Science and Technology Plan Project of Hangzhou (20201203B124)
  • Received Date: 2022-03-31
  • Accepted Date: 2022-09-06
  • Rev Recd Date: 2022-08-26
  • Available Online: 2022-09-09
  • Publish Date: 2023-05-10
  • In the face verification task of the face recognition model, traditional adversarial attack methods can not quickly generate real and natural adversarial examples, and the adversarial examples generated for one model under the white-box setting perform worse when transferred to other models. A GAN-based method TAdvFace is proposed for transferable adversarial example generation. TAdvFace uses an attention generator to improve the extraction of facial features. A Gaussian filtering operation is used to improve the smoothness of the adversarial samples. An automatic adjustment strategy is used to adjust the loss weight of identity discrimination, which can quickly generate high-quality migratable adversarial samples based on different face images. Experimental results show that through the white box training of a single model, the adversarial examples generated by the TAdvFace can achieve great attack results and transferability in a variety of face recognition models and commercial API models.
  • loading
  • [1]
    ZHONG Yaoyao and DENG Weihong. Towards transferable adversarial attack against deep face recognition[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1452–1466. doi: 10.1109/TIFS.2020.3036801
    [2]
    SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014.
    [3]
    GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [4]
    MIYATO T, DAI A M, and GOODFELLOW I J. Adversarial training methods for semi-supervised text classification[C]. The 5th International Conference on Learning Representations, Toulon, France, 2017.
    [5]
    MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
    [6]
    DABOUEI A, SOLEYMANI S, DAWSON J, et al. Fast geometrically-perturbed adversarial faces[C]. 2019 IEEE Winter conference on Applications of Computer Vision, Waikoloa, USA, 2019: 1979–1988.
    [7]
    DONG Yinpeng, SU Hang, WU Baoyuan, et al. Efficient decision-based black-box adversarial attacks on face recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7709–7714.
    [8]
    HANSEN N and OSTERMEIER A. Completely derandomized self-adaptation in evolution strategies[J]. Evolutionary Computation, 20o1, 9(2): 159–195.
    [9]
    YANG Xiao, YANG Dingcheng, DONG Yinpeng, et al. Delving into the adversarial robustness on face recognition[EB/OL]. https://arxiv.org/pdf/2007.04118v1.pdf, 2022.
    [10]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622
    [11]
    XIAO Chaowei, LI Bo, ZHU Junyan, et al. Generating adversarial examples with adversarial networks[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 3905–3911.
    [12]
    YANG Lu, SONG Qing, and WU Yingqi. Attacks on state-of-the-art face recognition using attentional adversarial attack generative network[J]. Multimedia Tools and Applications, 2021, 80(1): 855–875. doi: 10.1007/s11042-020-09604-z
    [13]
    QIU Haonan, XIAO Chaowei, YANG Lei, et al. SemanticAdv: Generating adversarial examples via attribute-conditioned image editing[C]. 2020 16th European Conference on Computer Vision, Glasgow, UK, 2020: 19–37.
    [14]
    JOSHI A, MUKHERJEE A, SARKAR S, et al. Semantic adversarial attacks: Parametric transformations that fool deep classifiers[C]. The 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 4773–4783.
    [15]
    MIRJALILI V, RASCHKA S, and ROSS A. PrivacyNet: Semi-adversarial networks for multi-attribute face privacy[J]. IEEE Transactions on Image Processing , 2020, 29: 9400–9412. doi: 10.1109/TIP.2020.3024026
    [16]
    ZHU Zheng’an, LU Yunzhong, and CHIANG C K. Generating adversarial examples by makeup attacks on face recognition[C]. 2019 IEEE International Conference on Image Processing, Taipei, China, 2019: 2516–2520.
    [17]
    DEB D, ZHANG Jianbang, and JAIN A K. AdvFaces: Adversarial face synthesis[C]. 2020 IEEE International Joint Conference on Biometrics, Houston, USA, 2020: 1–10.
    [18]
    HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [19]
    SHARMA Y, DING G W, and BRUBAKER M A. On the effectiveness of low frequency perturbations[C]. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019: 3389–3396.
    [20]
    YI Dong, LEI Zhen, LIAO Shengcai, et al. Learning face representation from scratch[EB/OL]. https://arxiv.org/abs/1411.7923.pdf, 2022.
    [21]
    HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments[EB/OL]. http://vis-www.cs.umass.edu/papers/lfw.pdf, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(8)

    Article Metrics

    Article views (656) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return