Advanced Search
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
GUO Yanbu, MA Huan, LI Chaoyang, ZHOU Dongming. Deep Disease MicroRNA Association Prediction via Variational Gated Graph Autoencoders[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1786-1794. doi: 10.11999/JEIT220354
Citation: GUO Yanbu, MA Huan, LI Chaoyang, ZHOU Dongming. Deep Disease MicroRNA Association Prediction via Variational Gated Graph Autoencoders[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1786-1794. doi: 10.11999/JEIT220354

Deep Disease MicroRNA Association Prediction via Variational Gated Graph Autoencoders

doi: 10.11999/JEIT220354
Funds:  The National Natural Science Foundation of China (62066047), The Doctor Scientific Research Fund of Zhengzhou University of Light Industry (2021BSJJ032)
  • Received Date: 2022-03-31
  • Rev Recd Date: 2022-06-19
  • Available Online: 2022-06-24
  • Publish Date: 2023-05-10
  • micro RiboNucleic Acid (miRNA) plays an important role in the process of gene expression and transcription, and is closely related to the production of diseases. Biological experimental methods for disease miRNA association prediction are costly and time-consuming. To extract contextual information in heterogeneous networks of diseases and miRNAs, a high-performance Variational Gated AutoEncoder Network (VGAE-N) and a gated multi-layer perceptron are designed based on gated mechanisms and convolutions, and then a deep variational gated neural model is constructed for inferring disease miRNA associations. Multisource information first is integrated between miRNAs and diseases, and then the comprehensive similarity matrix is obtained between miRNAs and diseases. Based on a comprehensive network and the miRNA disease adjacency matrix, topological information is further extracted for miRNAs and diseases, respectively. Based on the miRNA disease adjacency matrix, the nonnegative matrix decomposition is used to extract low dimensional denoising features of miRNA and diseases. The experimental results show that the proposed model can effectively conduct miRNA disease association prediction, and provide reliable technical support for biological experiments.
  • loading
  • [1]
    刘文斌, 吴倩, 杜玉改, 等. 基于个性化网络标志物的药物推荐方法研究[J]. 电子与信息学报, 2020, 42(6): 1340–1347. doi: 10.11999/JEIT190837

    LIU Wenbin, WU Qian, DU Yugai, et al. Drug recommendation based on individual specific biomarkers[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1340–1347. doi: 10.11999/JEIT190837
    [2]
    郭茂祖, 王诗鸣, 刘晓燕, 等. miRNA与疾病关联关系预测算法[J]. 软件学报, 2017, 28(11): 3094–3102. doi: 10.13328/j.cnki.jos.005351

    GUO Maozu, WANG Shiming, LIU Xiaoyan, et al. Algorithm for predicting the associations between MiRNAs and diseases[J]. Journal of Software, 2017, 28(11): 3094–3102. doi: 10.13328/j.cnki.jos.005351
    [3]
    王磊, 徐涛, 宋传东, 等. 基于深度学习的miRNA与疾病相关性预测算法[J]. 电子学报, 2020, 48(5): 870–877. doi: 10.3969/j.issn.0372-2112.2020.05.006

    WANG Lei, XU Tao, SONG Chuandong, et al. Prediction algorithm of association between miRNAs and diseases based on deep learning[J]. Acta Electronica Sinica, 2020, 48(5): 870–877. doi: 10.3969/j.issn.0372-2112.2020.05.006
    [4]
    ZHENG Kai, YOU Zhuhong, WANG Lei, et al. MISSIM: An incremental learning-based model with applications to the prediction of miRNA-disease association[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(5): 1733–1742. doi: 10.1109/TCBB.2020.3013837
    [5]
    GUO Leiming, SHI Kun, and WANG Lin. MLPMDA: Multi-layer linear projection for predicting miRNA-disease association[J]. Knowledge-Based Systems, 2021, 214: 106718. doi: 10.1016/j.knosys.2020.106718
    [6]
    SHI Hongbo, XU Juan, ZHANG Guangde, et al. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes[J]. BMC Systems Biology, 2013, 7(1): 101. doi: 10.1186/1752-0509-7-101
    [7]
    高鹏, 陈智华. 一种基于拓扑信息的预测疾病相关的MicroRNAs方法[J]. 电子学报, 2020, 48(2): 333–340. doi: 10.3969/j.issn.0372-2112.2020.02.016

    GAO Peng and CHEN Zhihua. A method for predicting disease-related MicroRNAs based on topological information[J]. Acta Electronica Sinica, 2020, 48(2): 333–340. doi: 10.3969/j.issn.0372-2112.2020.02.016
    [8]
    LIU Yuansheng, ZENG Xiangxiang, HE Zengyou, et al. Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(4): 905–915. doi: 10.1109/TCBB.2016.2550432
    [9]
    YAN Cheng, WANG Jianxin, NI Peng, et al. DNRLMF-MDA: Predicting microRNA-disease associations based on similarities of microRNAs and diseases[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(1): 233–243. doi: 10.1109/TCBB.2017.2776101
    [10]
    CHEN Xing, HUANG Li, XIE Di, et al. EGBMMDA: Extreme gradient boosting machine for miRNA-disease association prediction[J]. Cell Death & Disease, 2018, 9(1): 3. doi: 10.1038/s41419-017-0003-x
    [11]
    XUAN Ping, SHEN Tonghui, WANG Xiao, et al. Inferring disease-associated microRNAs in heterogeneous networks with node attributes[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(3): 1019–1031. doi: 10.1109/TCBB.2018.2872574
    [12]
    NIU Yawei, WANG Guanghui, YAN Guiying, et al. Integrating random walk and binary regression to identify novel miRNA-disease association[J]. BMC Bioinformatics, 2019, 20(1): 59. doi: 10.1186/s12859-019-2640-9
    [13]
    LUO Jiawei, DING Pingjian, LIANG Cheng, et al. Collective prediction of disease-associated miRNAs based on transduction learning[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(6): 1468–1475. doi: 10.1109/TCBB.2016.2599866
    [14]
    CHEN Xing and HUANG Li. LRSSLMDA: Laplacian regularized sparse subspace learning for miRNA-disease association prediction[J]. PLoS Computational Biology, 2017, 13(12): e1005912. doi: 10.1371/journal.pcbi.1005912
    [15]
    PENG Jiajie, HUI Weiwei, LI Qianqian, et al. A learning-based framework for miRNA-disease association identification using neural networks[J]. Bioinformatics, 2019, 35(21): 4364–4371. doi: 10.1093/bioinformatics/btz254
    [16]
    CHEN Xing, GONG Yao, ZHANG Dehong, et al. DRMDA: Deep representations-based miRNA-disease association prediction[J]. Journal of Cellular and Molecular Medicine, 2018, 22(1): 472–485. doi: 10.1111/jcmm.13336
    [17]
    LI Jin, ZHANG Sai, LIU Tao, et al. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction[J]. Bioinformatics, 2020, 36(8): 2538–2546. doi: 10.1093/bioinformatics/btz965
    [18]
    ZHENG Kai, YOU Zhuhong, WANG Lei, et al. iMDA-BN: Identification of miRNA-disease associations based on the biological network and graph embedding algorithm[J]. Computational and Structural Biotechnology Journal, 2020, 18: 2391–2400. doi: 10.1016/j.csbj.2020.08.023
    [19]
    DING Yulian, TIAN Liping, LEI Xiujuan, et al. Variational graph auto-encoders for miRNA-disease association prediction[J]. Methods, 2021, 192: 25–34. doi: 10.1016/j.ymeth.2020.08.004
    [20]
    DING Yulian, LEI Xiujuan, LIAO Bo, et al. Predicting miRNA-disease associations based on multi-view variational graph auto-encoder with matrix factorization[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(1): 446–457. doi: 10.1109/JBHI.2021.3088342
    [21]
    袁野, 贾克斌, 刘鹏宇. 基于深度卷积神经网络的多元医学信号多级上下文自编码器[J]. 电子与信息学报, 2020, 42(2): 371–378. doi: 10.11999/JEIT190135

    YUAN Ye, JIA Kebin, and LIU Pengyu. Multi-context autoencoders for multivariate medical signals based on deep convolutional neural networks[J]. Journal of Electronics &Information Technology, 2020, 42(2): 371–378. doi: 10.11999/JEIT190135
    [22]
    DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 933–941.
    [23]
    LI Yang, QIU Chengxiang, TU Jian, et al. HMDD v2.0: A database for experimentally supported human microRNA and disease associations[J]. Nucleic Acids Research, 2014, 42(D1): D1070–D1074. doi: 10.1093/nar/gkt1023
    [24]
    HUANG Zhou, SHI Jiangcheng, GAO Yuanxu, et al. HMDD v3.0: A database for experimentally supported human microRNA-disease associations[J]. Nucleic Acids Research, 2019, 47(D1): D1013–D1017. doi: 10.1093/nar/gky1010
    [25]
    KOZOMARA A and GRIFFITHS-JONES S. miRBase: Annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Research, 2014, 42(D1): D68–D73. doi: 10.1093/nar/gkt1181
    [26]
    CHOU C H, SHRESTHA S, YANG C D, et al. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions[J]. Nucleic Acids Research, 2018, 46(D1): D296–D302. doi: 10.1093/nar/gkx1067
    [27]
    WANG Dong, WANG Juan, LU Ming, et al. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases[J]. Bioinformatics, 2010, 26(13): 1644–1650. doi: 10.1093/bioinformatics/btq241
    [28]
    VAN LAARHOVEN T, NABUURS S B, and MARCHIORI E. Gaussian interaction profile kernels for predicting drug–target interaction[J]. Bioinformatics, 2011, 27(21): 3036–3043. doi: 10.1093/bioinformatics/btr500
    [29]
    WANG Bo, MEZLINI A M, DEMIR F, et al. Similarity network fusion for aggregating data types on a genomic scale[J]. Nature Methods, 2014, 11(3): 333–337. doi: 10.1038/nmeth.2810
    [30]
    LI Yanghao, WANG Naiyan, SHI Jianping, et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80: 109–117. doi: 10.1016/J.patcog.2018.03.005
    [31]
    XIAO Qiu, DAI Jianhua, LUO Jiawei, et al. Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs[J]. Knowledge-Based Systems, 2019, 175: 118–129. doi: 10.1016/J.knosys.2019.03.023
    [32]
    ZHAO Yan, CHEN Xing, and YIN Jun. Adaptive boosting-based computational model for predicting potential miRNA-disease associations[J]. Bioinformatics, 2019, 35(22): 4730–4738. doi: 10.1093/bioinformatics/btz297
    [33]
    ZHANG Li, CHEN Xing, and YIN Jun. Prediction of potential mirna–disease associations through a novel unsupervised deep learning framework with variational autoencoder[J]. Cells, 2019, 8(9): 1040. doi: 10.3390/cells8091040
    [34]
    DING Yulian, WANF Fei, LEI Xiujuan, et al. Deep belief network–based matrix factorization model for MicroRNA-disease associations prediction[J]. Evolutionary Bioinformatics, 2020, 16: 17693432091970. doi: 10.1177/1176934320919707
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (361) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return