Citation: | GUO Yanbu, MA Huan, LI Chaoyang, ZHOU Dongming. Deep Disease MicroRNA Association Prediction via Variational Gated Graph Autoencoders[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1786-1794. doi: 10.11999/JEIT220354 |
[1] |
刘文斌, 吴倩, 杜玉改, 等. 基于个性化网络标志物的药物推荐方法研究[J]. 电子与信息学报, 2020, 42(6): 1340–1347. doi: 10.11999/JEIT190837
LIU Wenbin, WU Qian, DU Yugai, et al. Drug recommendation based on individual specific biomarkers[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1340–1347. doi: 10.11999/JEIT190837
|
[2] |
郭茂祖, 王诗鸣, 刘晓燕, 等. miRNA与疾病关联关系预测算法[J]. 软件学报, 2017, 28(11): 3094–3102. doi: 10.13328/j.cnki.jos.005351
GUO Maozu, WANG Shiming, LIU Xiaoyan, et al. Algorithm for predicting the associations between MiRNAs and diseases[J]. Journal of Software, 2017, 28(11): 3094–3102. doi: 10.13328/j.cnki.jos.005351
|
[3] |
王磊, 徐涛, 宋传东, 等. 基于深度学习的miRNA与疾病相关性预测算法[J]. 电子学报, 2020, 48(5): 870–877. doi: 10.3969/j.issn.0372-2112.2020.05.006
WANG Lei, XU Tao, SONG Chuandong, et al. Prediction algorithm of association between miRNAs and diseases based on deep learning[J]. Acta Electronica Sinica, 2020, 48(5): 870–877. doi: 10.3969/j.issn.0372-2112.2020.05.006
|
[4] |
ZHENG Kai, YOU Zhuhong, WANG Lei, et al. MISSIM: An incremental learning-based model with applications to the prediction of miRNA-disease association[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(5): 1733–1742. doi: 10.1109/TCBB.2020.3013837
|
[5] |
GUO Leiming, SHI Kun, and WANG Lin. MLPMDA: Multi-layer linear projection for predicting miRNA-disease association[J]. Knowledge-Based Systems, 2021, 214: 106718. doi: 10.1016/j.knosys.2020.106718
|
[6] |
SHI Hongbo, XU Juan, ZHANG Guangde, et al. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes[J]. BMC Systems Biology, 2013, 7(1): 101. doi: 10.1186/1752-0509-7-101
|
[7] |
高鹏, 陈智华. 一种基于拓扑信息的预测疾病相关的MicroRNAs方法[J]. 电子学报, 2020, 48(2): 333–340. doi: 10.3969/j.issn.0372-2112.2020.02.016
GAO Peng and CHEN Zhihua. A method for predicting disease-related MicroRNAs based on topological information[J]. Acta Electronica Sinica, 2020, 48(2): 333–340. doi: 10.3969/j.issn.0372-2112.2020.02.016
|
[8] |
LIU Yuansheng, ZENG Xiangxiang, HE Zengyou, et al. Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(4): 905–915. doi: 10.1109/TCBB.2016.2550432
|
[9] |
YAN Cheng, WANG Jianxin, NI Peng, et al. DNRLMF-MDA: Predicting microRNA-disease associations based on similarities of microRNAs and diseases[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(1): 233–243. doi: 10.1109/TCBB.2017.2776101
|
[10] |
CHEN Xing, HUANG Li, XIE Di, et al. EGBMMDA: Extreme gradient boosting machine for miRNA-disease association prediction[J]. Cell Death & Disease, 2018, 9(1): 3. doi: 10.1038/s41419-017-0003-x
|
[11] |
XUAN Ping, SHEN Tonghui, WANG Xiao, et al. Inferring disease-associated microRNAs in heterogeneous networks with node attributes[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(3): 1019–1031. doi: 10.1109/TCBB.2018.2872574
|
[12] |
NIU Yawei, WANG Guanghui, YAN Guiying, et al. Integrating random walk and binary regression to identify novel miRNA-disease association[J]. BMC Bioinformatics, 2019, 20(1): 59. doi: 10.1186/s12859-019-2640-9
|
[13] |
LUO Jiawei, DING Pingjian, LIANG Cheng, et al. Collective prediction of disease-associated miRNAs based on transduction learning[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(6): 1468–1475. doi: 10.1109/TCBB.2016.2599866
|
[14] |
CHEN Xing and HUANG Li. LRSSLMDA: Laplacian regularized sparse subspace learning for miRNA-disease association prediction[J]. PLoS Computational Biology, 2017, 13(12): e1005912. doi: 10.1371/journal.pcbi.1005912
|
[15] |
PENG Jiajie, HUI Weiwei, LI Qianqian, et al. A learning-based framework for miRNA-disease association identification using neural networks[J]. Bioinformatics, 2019, 35(21): 4364–4371. doi: 10.1093/bioinformatics/btz254
|
[16] |
CHEN Xing, GONG Yao, ZHANG Dehong, et al. DRMDA: Deep representations-based miRNA-disease association prediction[J]. Journal of Cellular and Molecular Medicine, 2018, 22(1): 472–485. doi: 10.1111/jcmm.13336
|
[17] |
LI Jin, ZHANG Sai, LIU Tao, et al. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction[J]. Bioinformatics, 2020, 36(8): 2538–2546. doi: 10.1093/bioinformatics/btz965
|
[18] |
ZHENG Kai, YOU Zhuhong, WANG Lei, et al. iMDA-BN: Identification of miRNA-disease associations based on the biological network and graph embedding algorithm[J]. Computational and Structural Biotechnology Journal, 2020, 18: 2391–2400. doi: 10.1016/j.csbj.2020.08.023
|
[19] |
DING Yulian, TIAN Liping, LEI Xiujuan, et al. Variational graph auto-encoders for miRNA-disease association prediction[J]. Methods, 2021, 192: 25–34. doi: 10.1016/j.ymeth.2020.08.004
|
[20] |
DING Yulian, LEI Xiujuan, LIAO Bo, et al. Predicting miRNA-disease associations based on multi-view variational graph auto-encoder with matrix factorization[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(1): 446–457. doi: 10.1109/JBHI.2021.3088342
|
[21] |
袁野, 贾克斌, 刘鹏宇. 基于深度卷积神经网络的多元医学信号多级上下文自编码器[J]. 电子与信息学报, 2020, 42(2): 371–378. doi: 10.11999/JEIT190135
YUAN Ye, JIA Kebin, and LIU Pengyu. Multi-context autoencoders for multivariate medical signals based on deep convolutional neural networks[J]. Journal of Electronics &Information Technology, 2020, 42(2): 371–378. doi: 10.11999/JEIT190135
|
[22] |
DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 933–941.
|
[23] |
LI Yang, QIU Chengxiang, TU Jian, et al. HMDD v2.0: A database for experimentally supported human microRNA and disease associations[J]. Nucleic Acids Research, 2014, 42(D1): D1070–D1074. doi: 10.1093/nar/gkt1023
|
[24] |
HUANG Zhou, SHI Jiangcheng, GAO Yuanxu, et al. HMDD v3.0: A database for experimentally supported human microRNA-disease associations[J]. Nucleic Acids Research, 2019, 47(D1): D1013–D1017. doi: 10.1093/nar/gky1010
|
[25] |
KOZOMARA A and GRIFFITHS-JONES S. miRBase: Annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Research, 2014, 42(D1): D68–D73. doi: 10.1093/nar/gkt1181
|
[26] |
CHOU C H, SHRESTHA S, YANG C D, et al. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions[J]. Nucleic Acids Research, 2018, 46(D1): D296–D302. doi: 10.1093/nar/gkx1067
|
[27] |
WANG Dong, WANG Juan, LU Ming, et al. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases[J]. Bioinformatics, 2010, 26(13): 1644–1650. doi: 10.1093/bioinformatics/btq241
|
[28] |
VAN LAARHOVEN T, NABUURS S B, and MARCHIORI E. Gaussian interaction profile kernels for predicting drug–target interaction[J]. Bioinformatics, 2011, 27(21): 3036–3043. doi: 10.1093/bioinformatics/btr500
|
[29] |
WANG Bo, MEZLINI A M, DEMIR F, et al. Similarity network fusion for aggregating data types on a genomic scale[J]. Nature Methods, 2014, 11(3): 333–337. doi: 10.1038/nmeth.2810
|
[30] |
LI Yanghao, WANG Naiyan, SHI Jianping, et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80: 109–117. doi: 10.1016/J.patcog.2018.03.005
|
[31] |
XIAO Qiu, DAI Jianhua, LUO Jiawei, et al. Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs[J]. Knowledge-Based Systems, 2019, 175: 118–129. doi: 10.1016/J.knosys.2019.03.023
|
[32] |
ZHAO Yan, CHEN Xing, and YIN Jun. Adaptive boosting-based computational model for predicting potential miRNA-disease associations[J]. Bioinformatics, 2019, 35(22): 4730–4738. doi: 10.1093/bioinformatics/btz297
|
[33] |
ZHANG Li, CHEN Xing, and YIN Jun. Prediction of potential mirna–disease associations through a novel unsupervised deep learning framework with variational autoencoder[J]. Cells, 2019, 8(9): 1040. doi: 10.3390/cells8091040
|
[34] |
DING Yulian, WANF Fei, LEI Xiujuan, et al. Deep belief network–based matrix factorization model for MicroRNA-disease associations prediction[J]. Evolutionary Bioinformatics, 2020, 16: 17693432091970. doi: 10.1177/1176934320919707
|