Citation: | ZHANG Guangchi, HE Zinan, CUI Miao. Energy Consumption Optimization of Unmanned Aerial Vehicle Assisted Mobile Edge Computing Systems Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1635-1643. doi: 10.11999/JEIT220352 |
[1] |
MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
|
[2] |
MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964
|
[3] |
LIU Tianyu, CUI Miao, ZHANG Guangchi, et al. 3D trajectory and transmit power optimization for UAV-enabled multi-link relaying systems[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(1): 392–405. doi: 10.1109/TGCN.2020.3048135
|
[4] |
LYU Xinchen, TIAN Hui, NI Wei, et al. Energy-efficient admission of delay-sensitive tasks for mobile edge computing[J]. IEEE Transactions on Communications, 2018, 66(6): 2603–2616. doi: 10.1109/TCOMM.2018.2799937
|
[5] |
WU Qingqing and ZHANG Rui. Common throughput maximization in UAV-enabled OFDMA systems with delay consideration[J]. IEEE Transactions on Communications, 2018, 66(12): 6614–6627. doi: 10.1109/TCOMM.2018.2865922
|
[6] |
LI Zhiyang, CHEN Ming, PAN Cunhua, et al. Joint trajectory and communication design for secure UAV networks[J]. IEEE Communications Letters, 2019, 23(4): 636–639. doi: 10.1109/LCOMM.2019.2898404
|
[7] |
LI Yuxi. Deep reinforcement learning: An overview[EB/OL]. https://arxiv.org/abs/1701.07274, 2021.
|
[8] |
PENG Yingsheng, LIU Yong, and ZHANG Han. Deep reinforcement learning based path planning for UAV-assisted edge computing networks[C]. 2021 IEEE Wireless Communications and Networking Conference, Nanjing, China, 2021: 1–6.
|
[9] |
SEID A M, BOATENG G O, ANOKYE S, et al. Collaborative computation offloading and resource allocation in multi-UAV-assisted IoT networks: A deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2021, 8(15): 12203–12218. doi: 10.1109/JIOT.2021.3063188
|
[10] |
FUJIMOTO S and GU S S. A minimalist approach to offline reinforcement learning[C]. The 34th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2021.
|
[11] |
HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[EB/OL]. https://arxiv.org/abs/1812.05905, 2021.
|
[12] |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[C]. The 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2021.
|
[13] |
ZHANG Guangchi, YAN Haiqiang, ZENG Yong, et al. Trajectory optimization and power allocation for multi-hop UAV relaying communications[J]. IEEE Access, 2018, 6: 48566–48576. doi: 10.1109/ACCESS.2018.2868117
|
[14] |
YU Zhe, GONG Yanmin, GONG Shimin, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147–3159. doi: 10.1109/JIOT.2020.2965898
|
[15] |
HUANG Yingqian, CUI Miao, ZHANG Guangchi, et al. Bandwidth, power and trajectory optimization for UAV base station networks with backhaul and user QoS constraints[J]. IEEE Access, 2020, 8: 67625–67634. doi: 10.1109/ACCESS.2020.2986075
|
[16] |
YANG Zhaohui, PAN Cunhua, WANG Kezhi, et al. Energy efficient resource allocation in UAV-enabled mobile edge computing networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4576–4589. doi: 10.1109/TWC.2019.2927313
|
[17] |
ZHANG Guangchi, WU Qingqing, CUI Miao, et al. Securing UAV communications via joint trajectory and power control[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1376–1389. doi: 10.1109/TWC.2019.2892461
|
[18] |
WANG Xinhou, WANG Kezhi, WU Song, et al. Dynamic resource scheduling in mobile edge cloud with cloud radio access network[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(11): 2429–2445. doi: 10.1109/TPDS.2018.2832124
|
[19] |
JIANG Feibo, WANG Kezhi, DONG Li, et al. Deep-learning-based joint resource scheduling algorithms for hybrid MEC networks[J]. IEEE Internet of Things Journal, 2020, 7(7): 6252–6265. doi: 10.1109/JIOT.2019.2954503
|