Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
YUAN Lifen, ZHANG Chenglin, YIN Baiqiang, LI Bing, ZUO Lei. Accurate and Fast Feature Extraction Method of Power Quality Disturbances Based on Modified S-Transform of Optimal Bohman Window[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3796-3805. doi: 10.11999/JEIT220344
Citation: YUAN Lifen, ZHANG Chenglin, YIN Baiqiang, LI Bing, ZUO Lei. Accurate and Fast Feature Extraction Method of Power Quality Disturbances Based on Modified S-Transform of Optimal Bohman Window[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3796-3805. doi: 10.11999/JEIT220344

Accurate and Fast Feature Extraction Method of Power Quality Disturbances Based on Modified S-Transform of Optimal Bohman Window

doi: 10.11999/JEIT220344
Funds:  The National Natural Science Foundation of China (61971175), The Fundamental Research Funds for the Central Universities (JZ2019YYPY0025)
  • Received Date: 2022-03-30
  • Accepted Date: 2022-08-02
  • Rev Recd Date: 2022-07-25
  • Available Online: 2022-08-08
  • Publish Date: 2022-11-14
  • Focusing on the problems of low time-frequency resolution and large amount of calculation in the traditional S-Transform, a modified S-Transform based on the optimal Bohman window is proposed. In order to extract accurately and quickly the characteristics of all kinds of disturbance signals, this method obtains the optimal time-frequency resolution by controlling directly the window length and carries out time-frequency analysis only for the main frequency points. Firstly, the optimal length parameter is determined according to the proposed evaluation criteria. Secondly, the sampled signal spectrum is obtained through fast Fourier transform, and then the main frequency points are determined by the dynamic measurement fast algorithm based on the maximum envelope; Then the corresponding optimal length parameter is selected according to the frequency band of the main frequency point for calculation and processing; Finally, the time-frequency feature extraction is completed by calculating the time-frequency amplitude vector based on modulus time-frequency matrix. Simulation analysis and experimental results show that the proposed method has higher time-frequency resolution and shorter calculation time than the traditional S-Transform, and is suitable for the accurate and fast extraction of power quality disturbance signal features.
  • loading
  • [1]
    汪颖, 罗代军, 肖先勇, 等. 超高次谐波问题及其研究现状与趋势[J]. 电网技术, 2018, 42(2): 353–365. doi: 10.13335/j.1000-3673.pst.2017.2508

    WANG Ying, LUO Daijun, XIAO Xianyong, et al. Review and development tendency of research on 2~150 kHz supraharmonics[J]. Power System Technology, 2018, 42(2): 353–365. doi: 10.13335/j.1000-3673.pst.2017.2508
    [2]
    尹柏强, 陈奇彬, 李兵, 等. 基于改进Kaiser窗快速S变换和LightGBM的电能质量扰动识别与分类新方法[J]. 中国电机工程学报, 2021, 41(24): 8372–8383. doi: 10.13334/j.0258-8013.pcsee.210743

    YIN Baiqiang, CHEN Qibin, LI Bing, et al. A new method for identification and classification of power quality disturbance based on modified kaiser window fast S-transform and LightGBM[J]. Proceedings of the CSEE, 2021, 41(24): 8372–8383. doi: 10.13334/j.0258-8013.pcsee.210743
    [3]
    汪飞, 全晓庆, 任林涛. 电能质量扰动检测与识别方法研究综述[J]. 中国电机工程学报, 2021, 41(12): 4104–4120. doi: 10.13334/j.0258-8013.pcsee.201261

    WANG Fei, QUAN Xiaoqing, and REN Lintao. Review of power quality disturbance detection and identification methods[J]. Proceedings of the CSEE, 2021, 41(12): 4104–4120. doi: 10.13334/j.0258-8013.pcsee.201261
    [4]
    SINGH U and SINGH S N. Application of fractional Fourier transform for classification of power quality disturbances[J]. IET Science, Measurement & Technology, 2017, 11(1): 67–76. doi: 10.1049/iet-smt.2016.0194
    [5]
    杨超, 张淮清, 王耀, 等. 计及全泄漏影响的多点插值离散傅里叶变换校正方法[J]. 电工技术学报, 2020, 35(16): 3385–3395. doi: 10.19595/j.cnki.1000-6753.tces.190883

    YANG Chao, ZHANG Huaiqing, WANG Yao, et al. Multipoint interpolated discrete Fourier transform correction method considering total leakage effect[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3385–3395. doi: 10.19595/j.cnki.1000-6753.tces.190883
    [6]
    SATPATHI K, YEAP Y M, UKIL A, et al. Short-time Fourier transform based transient analysis of VSC interfaced point-to-point DC System[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4080–4091. doi: 10.1109/TIE.2017.2758745
    [7]
    朱茂桃, 吴新佳, 郑国峰, 等. 基于短时傅里叶变换的汽车零部件耐久性载荷信号编辑方法[J]. 机械工程学报, 2018, 55(4): 126–134. doi: 10.3901/JME.2019.04.126

    ZHU Maotao, WU Xinjia, ZHENG Guofeng, et al. Load signal edition method based on the short-time Fourier transform to durability test of vehicle component[J]. Journal of Mechanical Engineering, 2018, 55(4): 126–134. doi: 10.3901/JME.2019.04.126
    [8]
    陈正颖, 王黎明, 怡勇. 基于短时傅里叶变换的直流电晕无线电干扰激发电流计算[J]. 高电压技术, 2019, 45(6): 1866–1872. doi: 10.13336/j.1003-6520.hve.20190604024

    CHEN Zhengying, WANG Liming, and YI Yong. Computation of radio interference excitation current of DC corona based on short-time fourier transform[J]. High Voltage Engineering, 2019, 45(6): 1866–1872. doi: 10.13336/j.1003-6520.hve.20190604024
    [9]
    代荡荡, 王先培, 龙嘉川, 等. 基于改进Protrugram和小波变换的超高频局部放电信号去噪方法[J]. 高电压技术, 2018, 44(11): 3577–3586. doi: 10.13336/j.1003-6520.hve.20181031017

    DAI Dangdang, WANG Xianpei, LONG Jiachuan, et al. Denoising method of ultra-high frequency partial discharge signal based on improved protrugram and wavelet transform[J]. High Voltage Engineering, 2018, 44(11): 3577–3586. doi: 10.13336/j.1003-6520.hve.20181031017
    [10]
    THIRUMALA K, PAL S, JAIN T, et al. A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM[J]. Neurocomputing, 2019, 334: 265–274. doi: 10.1016/j.neucom.2019.01.038
    [11]
    吴建章, 梅飞, 郑建勇, 等. 基于改进经验小波变换和XGBoost的电能质量复合扰动分类[J]. 电工技术学报, 2022, 37(1): 232–243,253. doi: 10.19595/j.cnki.1000-6753.tces.201363

    WU Jianzhang, MEI Fei, ZHENG Jianyong, et al. Recognition of multiple power quality disturbances based on modified empirical wavelet transform and XGBoost[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 232–243,253. doi: 10.19595/j.cnki.1000-6753.tces.201363
    [12]
    尹柏强, 王署东, 何怡刚, 等. 基于快速S变换时频空间模型的电磁干扰复杂度评估方法[J]. 电子与信息学报, 2019, 41(1): 195–201. doi: 10.11999/JEIT180256

    YIN Baiqiang, WANG Shudong, HE Yigang, et al. Electromagnetic environment complex evaluation algorithm based on fast s-transform and time-frequency space model[J]. Journal of Electronics &Information Technology, 2019, 41(1): 195–201. doi: 10.11999/JEIT180256
    [13]
    殷浩然, 苗世洪, 郭舒毓, 等. 基于S变换相关度和深度学习的配电网单相接地故障选线新方法[J]. 电力自动化设备, 2021, 41(7): 88–96. doi: 10.16081/j.epae.202105028

    YIN Haoran, MIAO Shihong, GUO Shuyu, et al. Novel method for single-phase grounding fault line selection in distribution network based on S-Transform correlation and deep learning[J]. Electric Power Automation Equipment, 2021, 41(7): 88–96. doi: 10.16081/j.epae.202105028
    [14]
    刘宝稳, 汤容川, 马钲洲, 等. 基于S变换D-SVM AlexNet模型的GIS机械故障诊断与试验分析[J]. 高电压技术, 2021, 47(7): 2526–2535. doi: 10.13336/j.1003-6520.hve.20200224

    LIU Baowen, TANG Rongchuan, MA Zhengzhou, et al. GIS mechanical fault diagnosis and test analysis based on S-Transform D-SVM AlexNet model[J]. High Voltage Engineering, 2021, 47(7): 2526–2535. doi: 10.13336/j.1003-6520.hve.20200224
    [15]
    尹柏强, 何怡刚, 朱彦卿. 一种广义S变换及模糊SOM网络的电能质量多扰动检测和识别方法[J]. 中国电机工程学报, 2015, 35(4): 866–872. doi: 10.13334/j.0258-8013.pcsee.2015.04.013

    YIN Baiqiang, HE Yigang, and ZHU Yanqing. Detection and classification of power quality multi-disturbances based on generalized S-Transform and fuzzy SOM neural network[J]. Proceedings of the CSEE, 2015, 35(4): 866–872. doi: 10.13334/j.0258-8013.pcsee.2015.04.013
    [16]
    徐艳春, 高永康, 李振兴, 等. 基于VMD初始化S变换的混合动力系统电能质量扰动检测与分类[J]. 中国电机工程学报, 2019, 39(16): 4786–4798. doi: 10.13334/j.0258-8013.pcsee.181861

    XU Yanchun, GAO Yongkang, LI Zhenxing, et al. Power quality disturbance detection and classification of hybrid power system based on VMD initialization S-transform[J]. Proceedings of the CSEE, 2019, 39(16): 4786–4798. doi: 10.13334/j.0258-8013.pcsee.181861
    [17]
    王仁明, 汪宏阳, 张赟宁, 等. 基于分段改进S变换和随机森林的复合电能质量扰动识别方法[J]. 电力系统保护与控制, 2020, 48(7): 19–28. doi: 10.19783/j.cnki.pspc.190569

    WANG Renming, WANG Hongyang, ZHANG Yunning, et al. Composite power quality disturbance recognition based on segmented modified S-Transform and random forest[J]. Power System Protection and Control, 2020, 48(7): 19–28. doi: 10.19783/j.cnki.pspc.190569
    [18]
    TANG Qiu, QIU Wei, and ZHOU Yicong. Classification of complex power quality disturbances using optimized S-transform and kernel SVM[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9715–9723. doi: 10.1109/TIE.2019.2952823
    [19]
    LIANG Chengbin, TENG Zhaosheng, LI Jianmin, et al. A Kaiser window-based S-Transform for time-frequency analysis of power quality signals[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 965–975. doi: 10.1109/TII.2021.3083240
    [20]
    易吉良, 周曼, 李中启, 等. 采用不完全S变换的复杂谐波参数估计[J]. 电工技术学报, 2018, 33(S1): 112–120. doi: 10.19595/j.cnki.1000-6753.tces.180554

    YI Jiliang, ZHOU Man, LI Zhongqi, et al. Complex harmonic parameters estimation using incomplete S transform[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 112–120. doi: 10.19595/j.cnki.1000-6753.tces.180554
    [21]
    LI Jianmin, TENG Zhaosheng, TANG Qiu, et al. Detection and classification of power quality disturbances using double resolution S-transform and DAG-SVMs[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(10): 2302–2312. doi: 10.1109/TIM.2016.2578518
    [22]
    易吉良, 彭建春, 谭会生. 采用不完全S变换的电能质量扰动检测方法[J]. 高电压技术, 2009, 35(10): 2562–2567. doi: 10.13336/j.1003-6520.hve.2009.10.024

    YI Jiliang, PENG Jianchun, and TAN Huisheng. Detection method of power quality disturbances using incomplete S-Transform[J]. High Voltage Engineering, 2009, 35(10): 2562–2567. doi: 10.13336/j.1003-6520.hve.2009.10.024
    [23]
    刘应梅, 白晓民, 张红斌, 等. 基于动态测度的电能质量扰动检测[J]. 中国电机工程学报, 2003, 23(10): 57–62. doi: 10.3321/j.issn:0258-8013.2003.10.012

    LIU Yingmei, BAI Xiaomin, ZHANG Hongbin, et al. The detection of power quality disturbance based on dynamics[J]. Proceedings of the CSEE, 2003, 23(10): 57–62. doi: 10.3321/j.issn:0258-8013.2003.10.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article Metrics

    Article views (464) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return