Citation: | FANG Yi, LIANG Xusheng, SHI Zhifang, HAN Guojun. An Performance Optimization Scheme for Flash Memory System in 6G Mobile Network: Bit Remapping[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3083-3090. doi: 10.11999/JEIT220343 |
[1] |
SANDELL M and ISMAIL A. Machine learning for LLR estimation in flash memory with LDPC codes[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(2): 792–796. doi: 10.1109/TCSII.2020.3016979
|
[2] |
LEE W, KANG M, HONG S, et al. Interpage-based endurance-enhancing lower state encoding for MLC and TLC flash memory storages[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(9): 2033–2045. doi: 10.1109/TVLSI.2019.2912228
|
[3] |
YU D K H and HSIEH J W. A management scheme of multi-level retention-time queues for improving the endurance of flash-memory storage devices[J]. IEEE Transactions on Computers, 2020, 69(4): 549–562. doi: 10.1109/TC.2019.2954398
|
[4] |
LEE H C, SHY J H, CHEN Y M, et al. LDPC coded modulation for TLC flash memory[C]. 2017 IEEE Information Theory Workshop (ITW), Kaohsiung, China, 2017: 204–208.
|
[5] |
SHI Zhifang, FANG Yi, BU Yingcheng, et al. Convolutional neural network (CNN)-based detection for multi-level-cell NAND flash memory[J]. IEEE Communications Letters, 2021, 25(12): 3883–3887. doi: 10.1109/LCOMM.2021.3112908
|
[6] |
CUI Lanlan, WU Fei, LIU Xiaojian, et al. Improving LDPC decoding performance for 3D TLC NAND flash by LLR optimization scheme for hard and soft decision[J]. ACM Transactions on Design Automation of Electronic Systems, 2022, 27(1): 5. doi: 10.1145/3473305
|
[7] |
ASLAM C A, GUAN Yongliang, and CAI Kui. Retention-aware belief-propagation decoding for NAND flash memory[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2017, 64(6): 725–729. doi: 10.1109/TCSII.2016.2602359
|
[8] |
ZHANG Meng, WU Fei, DU Yajuan, et al. CooECC: A cooperative error correction scheme to reduce LDPC decoding latency in NAND flash[C]. 2017 IEEE International Conference on Computer Design (ICCD), Boston, USA, 2017: 657–664.
|
[9] |
PARK Y, LEE J, CHO S S, et al. Scaling and reliability of NAND flash devices[C]. 2014 IEEE International Reliability Physics Symposium, Waikoloa, USA, 2014: 2E. 1.1–2E. 1.4.
|
[10] |
CAI Yu, HARATSCH E F, MUTLU O, et al. Threshold voltage distribution in MLC NAND flash memory: Characterization, analysis, and modeling[C]. 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2013: 1285–1290.
|
[11] |
GUO Jie, WANG Danghui, SHAO Zili, et al. Data-pattern-aware error prevention technique to improve system reliability[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(4): 1433–1443. doi: 10.1109/TVLSI.2016.2642055
|
[12] |
WEI Debao, DENG Libao, ZHANG Peng, et al. NRC: A nibble remapping coding strategy for NAND flash reliability extension[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(11): 1942–1946. doi: 10.1109/TCAD.2016.2533861
|
[13] |
QIN Hongwei, ZHAO Yutong, FENG Dan, et al. CeSR + assisted LDPC: A holistic strategy to improve MLC NAND flash reliability[J]. IEEE Access, 2020, 8: 63239–63254. doi: 10.1109/ACCESS.2020.2985291
|
[14] |
BU Yingcheng, FANG Yi, ZHANG Guohua, et al. Achievable-rate-aware retention-error correction for multi-level-cell NAND flash memory[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, To be published.
|
[15] |
MEI Zhen, CAI Kui, and HE Xuan. Deep learning-aided dynamic read thresholds design for multi-level-cell flash memories[J]. IEEE Transactions on Communications, 2020, 68(5): 2850–2862. doi: 10.1109/TCOMM.2020.2974723
|
[16] |
SUN Wenhao and ZHENG Jianping. A low-complexity retention noise parameter estimation for MLC NAND flash memory[C]. The ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6.
|
[17] |
张司琪, 孔令军, 张顺外, 等. MLC型NAND闪存中基于MI异构的Polar码优化[J]. 应用科学学报, 2020, 38(3): 431–440. doi: 10.3969/j.issn.0255-8297.2020.03.009
ZHANG Siqi, KONG Lingjun, ZHANG Shunwai, et al. Optimization design of polar codes based on MI heterogeneity in MLC NAND flash channel[J]. Journal of Applied Sciences, 2020, 38(3): 431–440. doi: 10.3969/j.issn.0255-8297.2020.03.009
|
[18] |
KIM T, KONG G, XI Weiya, et al. Cell-to-cell interference compensation schemes using reduced symbol pattern of interfering cells for MLC NAND flash memory[J]. IEEE Transactions on Magnetics, 2013, 49(6): 2569–2573. doi: 10.1109/TMAG.2013.2251417
|
[19] |
DONG Guiqiang, LI Shu, and ZHANG Tong. Using data postcompensation and predistortion to tolerate cell-to-cell interference in MLC NAND flash memory[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2010, 57(10): 2718–2728. doi: 10.1109/TCSI.2010.2046966
|
[20] |
FANG Yi, BU Yingcheng, CHEN Pingping, et al. Irregular-mapped protograph LDPC-coded modulation: A bandwidth-efficient solution for 6G-enabled mobile networks[J]. IEEE Transactions on Intelligent Transportation Systems, To be published.
|
[21] |
CAI Yu, HARATSCH E F, MUTLU O, et al. Error patterns in MLC NAND flash memory: Measurement, characterization, and analysis[C]. 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2012: 521–526.
|
[22] |
DAI Lin, FANG Yi, YANG Zhaojie, et al. Protograph LDPC-coded BICM-ID with irregular CSK mapping in visible light communication systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11033–11038. doi: 10.1109/TVT.2021.3106053
|