Citation: | SHAO Haidong, YAN Shen, XIAO Yiming, LIU Yi. Semi-supervised Bearing Fault Diagnosis Using Improved Graph Attention Network under Time-varying Speeds[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1550-1558. doi: 10.11999/JEIT220303 |
[1] |
雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94–104. doi: 10.3901/JME.2018.05.094
LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94–104. doi: 10.3901/JME.2018.05.094
|
[2] |
邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9): 84–90. doi: 10.3901/JME.2020.09.084
SHAO Haidong, ZHANG Xiaoyang, CHENG Junsheng, et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9): 84–90. doi: 10.3901/JME.2020.09.084
|
[3] |
文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715
WEN Chenglin and LV Feiya. Review on deep learning based fault diagnosis[J]. Journal of Electronics &Information Technology, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715
|
[4] |
LIANG Pengfei, DENG Chao, WU Jun, et al. Intelligent fault diagnosis via semisupervised generative adversarial nets and wavelet transform[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4659–4671. doi: 10.1109/tim.2019.2956613
|
[5] |
RAZAVI-FAR R, HALLAJI E, FARAJZADEH-ZANJANI M, et al. A semi-supervised diagnostic framework based on the surface estimation of faulty distributions[J]. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1277–1286. doi: 10.1109/tii.2018.2851961
|
[6] |
YU Kun, MA Hui, LIN Tianran, et al. A consistency regularization based semi-supervised learning approach for intelligent fault diagnosis of rolling bearing[J]. Measurement, 2020, 165: 107987. doi: 10.1016/j.measurement.2020.107987
|
[7] |
TAO Xinmin, REN Chao, LI Qing, et al. Bearing defect diagnosis based on semi-supervised kernel Local Fisher discriminant analysis using pseudo labels[J]. ISA Transactions, 2021, 110: 394–412. doi: 10.1016/j.isatra.2020.10.033
|
[8] |
WU Xinya, ZHANG Yan, CHENG Changming, et al. A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery[J]. Mechanical Systems and Signal Processing, 2021, 149: 107327. doi: 10.1016/j.ymssp.2020.107327
|
[9] |
NIE Xiaoyin and XIE Gang. A two-stage semi-supervised learning framework for fault diagnosis of rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3521212. doi: 10.1109/tim.2021.3091489
|
[10] |
WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4–24. doi: 10.1109/TNNLS.2020.2978386
|
[11] |
ZHAO Xiaoli, JIA Minping, and LIU Zheng. Semisupervised graph convolution deep belief network for fault diagnosis of electormechanical system with limited labeled data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5450–5460. doi: 10.1109/tii.2020.3034189
|
[12] |
GAO Yiyuan, CHEN Mang, and YU Dejie. Semi-supervised graph convolutional network and its application in intelligent fault diagnosis of rotating machinery[J]. Measurement, 2021, 186: 110084. doi: 10.1016/j.measurement.2021.110084
|
[13] |
TANG Yao, ZHANG Xiaofei, ZHAI Yujia, et al. Rotating machine systems fault diagnosis using semisupervised conditional random field-based graph attention network[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3521010. doi: 10.1109/tim.2021.3091212
|
[14] |
向敏, 饶华阳, 张进进, 等. 基于图卷积神经网络的软件定义电力通信网络路由控制策略[J]. 电子与信息学报, 2021, 43(2): 388–395. doi: 10.11999/JEIT190971
XIANG Min, RAO Huayang, ZHANG Jinjin, et al. Software-defined power communication network routing control strategy based on graph convolution network[J]. Journal of Electronics &Information Technology, 2021, 43(2): 388–395. doi: 10.11999/JEIT190971
|
[15] |
盛晓光, 王颖, 钱力, 等. 基于图卷积半监督学习的论文作者同名消歧方法研究[J]. 电子与信息学报, 2021, 43(12): 3442–3450. doi: 10.11999/JEIT200905
SHENG Xiaoguang, WANG Ying, QIAN Li, et al. Author name disambiguation based on semi-supervised learning with graph convolutional network[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3442–3450. doi: 10.11999/JEIT200905
|
[16] |
CHEN Ke and WANG Shihai. Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 129–143. doi: 10.1109/TPAMI.2010.92
|
[17] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. https://arxiv.org/abs/1710.10903, 2018.
|
[18] |
LI Tianfu, ZHOU Zheng, LI Sinan, et al. The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study[J]. Mechanical Systems and Signal Processing, 2022, 168: 108653. doi: 10.1016/j.ymssp.2021.108653
|
[19] |
WANG Jinrui, LI Shunming, HAN Baokun, et al. Construction of a batch-normalized autoencoder network and its application in mechanical intelligent fault diagnosis[J]. Measurement Science and Technology, 2019, 30(1): 015106. doi: 10.1088/1361-6501/aaf319
|
[20] |
LIU Shen, CHEN Jinglong, HE Shuilong, et al. Subspace network with shared representation learning for intelligent fault diagnosis of machine under speed transient conditions with few samples[J]. ISA Transactions, 2022, 128: 531–544.
|
[21] |
SHI Zhen, CHEN Jinglong, ZI Yanyang, et al. A novel multitask adversarial network via redundant lifting for multicomponent intelligent fault detection under sharp speed variation[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3511010. doi: 10.1109/tim.2021.3055821
|
[22] |
HUANG Huan and BADDOUR N. Bearing vibration data collected under time-varying rotational speed conditions[J]. Data in Brief, 2018, 21: 1745–1749. doi: 10.1016/j.dib.2018.11.019
|
[23] |
HAMILTON W L, YING R, and LESKOVEC J. Inductive representation learning on large graphs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1025–1035.
|
[24] |
DEFFERRARD M, BRESSON X, and VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3844–3852.
|
[25] |
KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. The 5th International Conference on Learning Representations, Toulon, France, 2017.
|