Citation: | CUI Haoyang, YANG Kexin, GE Haihua, XU Yongpeng, WANG Haoran, YANG Cheng, DAI Yingying. Lightweight GB-YOLOv5m State Detection Method for Power Switchgear[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3777-3787. doi: 10.11999/JEIT220288 |
[1] |
张春晓, 陆志浩, 刘相财. 智慧变电站联合巡检技术及其应用[J]. 电力系统保护与控制, 2021, 49(9): 158–164. doi: 10.19783/j.cnki.pspc.201045
ZHANG Chunxiao, LU Zhihao, and LIU Xiangcai. Joint inspection technology and its application in a smart substation[J]. Power System Protection and Control, 2021, 49(9): 158–164. doi: 10.19783/j.cnki.pspc.201045
|
[2] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
|
[3] |
杨观赐, 杨静, 苏志东, 等. 改进的YOLO特征提取算法及其在服务机器人隐私情境检测中的应用[J]. 自动化学报, 2018, 44(12): 2238–2249. doi: 10.16383/j.aas.2018.c170265
YANG Guanci, YANG Jing, SU Zhidong, et al. An improved YOLO feature extraction algorithm and its application to privacy situation detection of social robots[J]. Acta Automatica Sinica, 2018, 44(12): 2238–2249. doi: 10.16383/j.aas.2018.c170265
|
[4] |
GIRSHICK R. Fast R-CNN[C]. The IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440–1448.
|
[5] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
|
[6] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767, 2018.
|
[7] |
鞠默然, 罗海波, 王仲博, 等. 改进的YOLO V3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 0715004. doi: 10.3788/AOS201939.0715004
JU Moran, LUO Haibo, WANG Zhongbo, et al. Improved YOLO V3 algorithm and its application in small target detection[J]. Acta Optica Sinica, 2019, 39(7): 0715004. doi: 10.3788/AOS201939.0715004
|
[8] |
BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934, 2020.
|
[9] |
谢昊源, 黄群星, 林晓青, 等. 基于图像深度学习的垃圾热值预测研究[J]. 化工学报, 2021, 72(5): 2773–2782. doi: 10.11949/0438-1157.20201481
XIE Haoyuan, HUANG Qunxing, LIN Xiaoqing, et al. Study on the calorific value prediction of municipal solid wastes byimage deep learning[J]. CIESC Journal, 2021, 72(5): 2773–2782. doi: 10.11949/0438-1157.20201481
|
[10] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 21–37.
|
[11] |
赵辉, 李志伟, 张天琪. 基于注意力机制的单发多框检测器算法[J]. 电子与信息学报, 2021, 43(7): 2096–2104. doi: 10.11999/JEIT200304
ZHAO Hui, LI Zhiwei, and ZHANG Tianqi. Attention based single shot multibox detector[J]. Journal of Electronics &Information Technology, 2021, 43(7): 2096–2104. doi: 10.11999/JEIT200304
|
[12] |
马鹏, 樊艳芳. 基于深度迁移学习的小样本智能变电站电力设备部件检测[J]. 电网技术, 2020, 44(3): 1148–1159. doi: 10.13335/j.1000-3673.pst.2018.2793
MA Peng and FAN Yanfang. Small sample smart substation power equipment component detection based on deep transfer learning[J]. Power System Technology, 2020, 44(3): 1148–1159. doi: 10.13335/j.1000-3673.pst.2018.2793
|
[13] |
王永平, 张红民, 彭闯, 等. 基于YOLO v3的高压开关设备异常发热点目标检测方法[J]. 红外技术, 2020, 42(10): 983–987. doi: 10.3724/SP.J.7103116038
WANG Yongping, ZHANG Hongmin, PENG Chuang, et al. The target detection method for abnormal heating point of high-voltage switchgear based on YOLO v3[J]. Infrared Technology, 2020, 42(10): 983–987. doi: 10.3724/SP.J.7103116038
|
[14] |
华泽玺, 施会斌, 罗彦, 等. 基于轻量级YOLO-v4模型的变电站数字仪表检测识别[J/OL]. 西南交通大学学报, http://kns.cnki.net/kcms/detail/51.1277.U.20211027.1050.003.html, 2021.
HUA Zexi, SHI Huibin, LUO Yan, et al. Detection and recognition of digital instruments based on lightweight YOLO-v4 model at substations[J/OL]. Journal of Southwest Jiaotong University, http://kns.cnki.net/kcms/detail/51.1277.U.20211027.1050.003.html, 2021.
|
[15] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
|
[16] |
刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报, 2020, 48(3): 590–601. doi: 10.3969/j.issn.0372-2112.2020.03.024
LIU Ying, LIU Hongyan, FAN Jiulun, et al. A survey of research and application of small object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(3): 590–601. doi: 10.3969/j.issn.0372-2112.2020.03.024
|
[17] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
|
[18] |
LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768.
|
[19] |
GHIASI G, LIN T Y, and LE Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7029–7038.
|
[20] |
赵德安, 曹硕, 孙月平, 等. 基于联动扩展神经网络的水下自由活蟹检测器研究[J]. 农业机械学报, 2020, 51(9): 163–174. doi: 10.6041/j.issn.1000-1298.2020.09.019
ZHAO Dean, CAO Shuo, SUN Yueping, et al. Small-sized efficient detector for underwater freely live crabs based on compound scaling neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 163–174. doi: 10.6041/j.issn.1000-1298.2020.09.019
|
[21] |
SEKARA V, STOPCZYNSKI A, and LEHMANN S. Fundamental structures of dynamic social networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(36): 9977. doi: 10.1073/pnas.1602803113
|