Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
CUI Haoyang, YANG Kexin, GE Haihua, XU Yongpeng, WANG Haoran, YANG Cheng, DAI Yingying. Lightweight GB-YOLOv5m State Detection Method for Power Switchgear[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3777-3787. doi: 10.11999/JEIT220288
Citation: CUI Haoyang, YANG Kexin, GE Haihua, XU Yongpeng, WANG Haoran, YANG Cheng, DAI Yingying. Lightweight GB-YOLOv5m State Detection Method for Power Switchgear[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3777-3787. doi: 10.11999/JEIT220288

Lightweight GB-YOLOv5m State Detection Method for Power Switchgear

doi: 10.11999/JEIT220288
Funds:  The National Natural Science Foundation of China (52177185)
  • Received Date: 2022-03-16
  • Accepted Date: 2022-07-14
  • Rev Recd Date: 2022-07-06
  • Available Online: 2022-07-21
  • Publish Date: 2022-11-14
  • Since status lights and instruments of power switchgear have the characteristics of high density and ectopic image, the detection ability of basic features such as target morphology, chromaticity comparison, and lightweight recognition ability in edge image processing technology presents higher requirements. Therefore, a Ghost-Bifpn-YOLOv5m(GB-YOLOv5m) method is proposed. Specifically, the Bi-directional Feature Pyramid Network (BiFPN) structure is adopted to give different weights to the feature layer to transmit more effective feature information. A detection layer scale is added to improve the detection accuracy of the network for small targets and tackle the complication of small target recognition caused by the high-density layout of status lights. The Ghost-Bottleneck structure is employed to replace the complex Bottleneck structure of the original backbone and realize the lightweight of the model, contributing to the formation of favorable conditions for deploying the model at the edge. Additionally, the transmission characteristics of status lights and instruments for limited samples are expanded with the image enhancement technology, and the high-speed convergence is realized through migration learning. The experimental results of 10 kV switchgear demonstrate that the algorithm has high recognition accuracy for 16 categories of cabinet status lights and instruments, with mean Average Precision (mAP) of 97.3% and fps of 37.533. Compared with the YOLOv5m algorithm, the model size is reduced by 37.04%, and mAP is increased by 10.2%, implying that the proposed method possesses a significantly enhanced detection ability for lamp bodies and table bodies, as well as remarkably improved lightweight recognition efficiency, which has certain practical significance for the real-time verification of the power state of the switchgear and the interaction of digital twins.
  • loading
  • [1]
    张春晓, 陆志浩, 刘相财. 智慧变电站联合巡检技术及其应用[J]. 电力系统保护与控制, 2021, 49(9): 158–164. doi: 10.19783/j.cnki.pspc.201045

    ZHANG Chunxiao, LU Zhihao, and LIU Xiangcai. Joint inspection technology and its application in a smart substation[J]. Power System Protection and Control, 2021, 49(9): 158–164. doi: 10.19783/j.cnki.pspc.201045
    [2]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [3]
    杨观赐, 杨静, 苏志东, 等. 改进的YOLO特征提取算法及其在服务机器人隐私情境检测中的应用[J]. 自动化学报, 2018, 44(12): 2238–2249. doi: 10.16383/j.aas.2018.c170265

    YANG Guanci, YANG Jing, SU Zhidong, et al. An improved YOLO feature extraction algorithm and its application to privacy situation detection of social robots[J]. Acta Automatica Sinica, 2018, 44(12): 2238–2249. doi: 10.16383/j.aas.2018.c170265
    [4]
    GIRSHICK R. Fast R-CNN[C]. The IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440–1448.
    [5]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    [6]
    REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767, 2018.
    [7]
    鞠默然, 罗海波, 王仲博, 等. 改进的YOLO V3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 0715004. doi: 10.3788/AOS201939.0715004

    JU Moran, LUO Haibo, WANG Zhongbo, et al. Improved YOLO V3 algorithm and its application in small target detection[J]. Acta Optica Sinica, 2019, 39(7): 0715004. doi: 10.3788/AOS201939.0715004
    [8]
    BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934, 2020.
    [9]
    谢昊源, 黄群星, 林晓青, 等. 基于图像深度学习的垃圾热值预测研究[J]. 化工学报, 2021, 72(5): 2773–2782. doi: 10.11949/0438-1157.20201481

    XIE Haoyuan, HUANG Qunxing, LIN Xiaoqing, et al. Study on the calorific value prediction of municipal solid wastes byimage deep learning[J]. CIESC Journal, 2021, 72(5): 2773–2782. doi: 10.11949/0438-1157.20201481
    [10]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 21–37.
    [11]
    赵辉, 李志伟, 张天琪. 基于注意力机制的单发多框检测器算法[J]. 电子与信息学报, 2021, 43(7): 2096–2104. doi: 10.11999/JEIT200304

    ZHAO Hui, LI Zhiwei, and ZHANG Tianqi. Attention based single shot multibox detector[J]. Journal of Electronics &Information Technology, 2021, 43(7): 2096–2104. doi: 10.11999/JEIT200304
    [12]
    马鹏, 樊艳芳. 基于深度迁移学习的小样本智能变电站电力设备部件检测[J]. 电网技术, 2020, 44(3): 1148–1159. doi: 10.13335/j.1000-3673.pst.2018.2793

    MA Peng and FAN Yanfang. Small sample smart substation power equipment component detection based on deep transfer learning[J]. Power System Technology, 2020, 44(3): 1148–1159. doi: 10.13335/j.1000-3673.pst.2018.2793
    [13]
    王永平, 张红民, 彭闯, 等. 基于YOLO v3的高压开关设备异常发热点目标检测方法[J]. 红外技术, 2020, 42(10): 983–987. doi: 10.3724/SP.J.7103116038

    WANG Yongping, ZHANG Hongmin, PENG Chuang, et al. The target detection method for abnormal heating point of high-voltage switchgear based on YOLO v3[J]. Infrared Technology, 2020, 42(10): 983–987. doi: 10.3724/SP.J.7103116038
    [14]
    华泽玺, 施会斌, 罗彦, 等. 基于轻量级YOLO-v4模型的变电站数字仪表检测识别[J/OL]. 西南交通大学学报, http://kns.cnki.net/kcms/detail/51.1277.U.20211027.1050.003.html, 2021.

    HUA Zexi, SHI Huibin, LUO Yan, et al. Detection and recognition of digital instruments based on lightweight YOLO-v4 model at substations[J/OL]. Journal of Southwest Jiaotong University, http://kns.cnki.net/kcms/detail/51.1277.U.20211027.1050.003.html, 2021.
    [15]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    [16]
    刘颖, 刘红燕, 范九伦, 等. 基于深度学习的小目标检测研究与应用综述[J]. 电子学报, 2020, 48(3): 590–601. doi: 10.3969/j.issn.0372-2112.2020.03.024

    LIU Ying, LIU Hongyan, FAN Jiulun, et al. A survey of research and application of small object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(3): 590–601. doi: 10.3969/j.issn.0372-2112.2020.03.024
    [17]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    [18]
    LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768.
    [19]
    GHIASI G, LIN T Y, and LE Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7029–7038.
    [20]
    赵德安, 曹硕, 孙月平, 等. 基于联动扩展神经网络的水下自由活蟹检测器研究[J]. 农业机械学报, 2020, 51(9): 163–174. doi: 10.6041/j.issn.1000-1298.2020.09.019

    ZHAO Dean, CAO Shuo, SUN Yueping, et al. Small-sized efficient detector for underwater freely live crabs based on compound scaling neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 163–174. doi: 10.6041/j.issn.1000-1298.2020.09.019
    [21]
    SEKARA V, STOPCZYNSKI A, and LEHMANN S. Fundamental structures of dynamic social networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(36): 9977. doi: 10.1073/pnas.1602803113
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (966) PDF downloads(132) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return