Advanced Search
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
SHAO Sujie, CHAI Ruijun, GUO Shaoyong, WU Shuang, WANG Zhili, QIU Xuesong. A Collaborative Mechanism for Smart Highway Edge Tasks Based on Location Prediction[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1154-1162. doi: 10.11999/JEIT220279
Citation: SHAO Sujie, CHAI Ruijun, GUO Shaoyong, WU Shuang, WANG Zhili, QIU Xuesong. A Collaborative Mechanism for Smart Highway Edge Tasks Based on Location Prediction[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1154-1162. doi: 10.11999/JEIT220279

A Collaborative Mechanism for Smart Highway Edge Tasks Based on Location Prediction

doi: 10.11999/JEIT220279
Funds:  The National Natural Science Foundation of China (62071070), The Key Project Plan of Blockchain in Ministry of Education of the People’s Republic of China (KJ010802)
  • Received Date: 2022-03-14
  • Rev Recd Date: 2022-06-16
  • Available Online: 2022-06-21
  • Publish Date: 2023-04-10
  • In recent years new services such as road monitoring and assisted driving in smart highways have been proposed, but the explosive growth of data traffic has also emerged, which has brought a great test to the carrying capacity of the network. With the maturity of 5G and mobile edge computing technology, massive tasks do not have to be processed centrally in the cloud, and edge-side co-processing becomes a better choice. In order to provide efficient and reliable services for users in the vehicle high-speed mobile scenario, a Collaboration of Edge Tasks based on Location Prediction (CETLP) is proposed in this paper. First, a delay and load balancing-oriented edge task collaboration model is established by combining the vehicle movement characteristics in the smart highway scenario. Then, a deep reinforcement learning-based edge task collaboration algorithm is proposed to solve the collaboration strategy for a large number of tasks with the objectives of task delay minimization and network load balancing. Simulation results show that the proposed mechanism can reduce the service delay while ensuring the network load balancing.
  • loading
  • [1]
    崔雪薇. 车路协同创未来——智慧公路技术在车路协同中的应用探讨[J]. 中国交通信息化, 2018(12): 22–26. doi: 10.13439/j.cnki.itsc.2018.12.002

    CUI Xuewei. The future of vehicle-road collaboration: Application of intelligent highway technology in vehicle-road collaboration[J]. China ITS Journal, 2018(12): 22–26. doi: 10.13439/j.cnki.itsc.2018.12.002
    [2]
    田辉, 范绍帅, 吕昕晨, 等. 面向5G需求的移动边缘计算[J]. 北京邮电大学学报, 2017, 40(2): 1–10. doi: 10.13190/j.jbupt.2017.02.001

    TIAN Hui, FAN Shaoshuai, LÜ Xinchen, et al. Mobile edge computing for 5G requirements[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(2): 1–10. doi: 10.13190/j.jbupt.2017.02.001
    [3]
    王寒松. 车联网中基于MEC的计算任务卸载策略研究[D]. [硕士论文], 北京邮电大学, 2019.

    WANG Hansong. Research of computing offloading scheme for MEC-enabled vehicular networks[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2019.
    [4]
    尉志青, 马昊, 张奇勋, 等. 感知-通信-计算融合的智能车联网挑战与趋势[J]. 中兴通讯技术, 2020, 26(1): 45–49. doi: 10.12142/ZTETJ.202001010

    WEI Zhiqing, MA Hao, ZHANG Qixun, et al. Challenge and trend of sensing, communication and computing integrated intelligent internet of vehicles[J]. ZTE Technology Journal, 2020, 26(1): 45–49. doi: 10.12142/ZTETJ.202001010
    [5]
    YANG Xiaolong, FEI Zesong, ZHENG Jianchao, et al. Joint multi-user computation offloading and data caching for hybrid mobile cloud/edge computing[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11018–11030. doi: 10.1109/TVT.2019.2942334
    [6]
    ZHANG Ke, MAO Yuming, LENG Supeng, et al. Mobile-edge computing for vehicular networks: A promising network paradigm with predictive off-Loading[J]. IEEE Vehicular Technology Magazine, 2017, 12(2): 36–44. doi: 10.1109/MVT.2017.2668838
    [7]
    ZHANG Ke, LENG Supeng, XIN Peng, et al. Artificial intelligence inspired transmission scheduling in cognitive vehicular communications and networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1987–1997. doi: 10.1109/JIOT.2018.2872013
    [8]
    LI Mushu, GAO Jie, ZHAO Lian, et al. Deep reinforcement learning for collaborative edge computing in vehicular networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1122–1135. doi: 10.1109/TCCN.2020.3003036
    [9]
    ZENG Feng, CHEN Qiao, MENG Lin, et al. Volunteer assisted collaborative offloading and resource allocation in vehicular edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3247–3257. doi: 10.1109/TITS.2020.2980422
    [10]
    LIU Jun, WANG Shoubin, WANG Jintao, et al. A task oriented computation offloading algorithm for intelligent vehicle network with mobile edge computing[J]. IEEE Access, 2019, 7: 180491–180502. doi: 10.1109/ACCESS.2019.2958883
    [11]
    张凤荔, 赵佳君, 刘东, 等. 基于深度强化学习的边云协同串行任务卸载算法[J]. 电子科技大学学报, 2021, 50(3): 398–404. doi: 10.12178/1001-0548.2021015

    ZHANG Fengli, ZHAO Jiajun, LIU Dong, et al. Edge cloud collaboration serial task offloading algorithm based on deep reinforcement learning[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(3): 398–404. doi: 10.12178/1001-0548.2021015
    [12]
    詹文翰, 王瑾, 朱清新, 等. 移动边缘计算中基于深度强化学习的计算卸载调度方法[J]. 计算机应用研究, 2021, 38(1): 241–245,263. doi: 10.19734/j.issn.1001-3695.2019.10.0594

    ZHAN Wenhan, WANG Jin, ZHU Qingxin, et al. Deep reinforcement learning based offloading scheduling in mobile edge computing[J]. Application Research of Computers, 2021, 38(1): 241–245,263. doi: 10.19734/j.issn.1001-3695.2019.10.0594
    [13]
    ZHANG Jie, GUO Hongzhi, and LIU Jiajia. Adaptive task offloading in vehicular edge computing networks: A reinforcement learning based scheme[J]. Mobile Networks and Applications, 2020, 25(5): 1736–1745. doi: 10.1007/s11036-020-01584-6
    [14]
    QI Qi, WANG Jingyu, MA Zhanyu, et al. Knowledge-driven service offloading decision for vehicular edge computing: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4192–4203. doi: 10.1109/TVT.2019.2894437
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (547) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return