Citation: | SHAO Sujie, WU Lei, ZHONG Cheng, GUO Shaoyong, BU Xiande. Container Based Microservice Selection for Multi-workflow in Edge Computing Paradigm[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3748-3756. doi: 10.11999/JEIT220267 |
[1] |
黄杰, 肖志清, 毛冬. 面向电力物联网的云边数据协同方法[J]. 电力信息与通信技术, 2022, 20(1): 35–42. doi: 10.16543/j.2095-641x.electric.power.ict.2022.01.005
HUANG Jie, XIAO Zhiqing, and MAO Dong. Cloud-edge data collaboration method for power IoTs[J]. Electric Power Information and Communication Technology, 2022, 20(1): 35–42. doi: 10.16543/j.2095-641x.electric.power.ict.2022.01.005
|
[2] |
MA Hua, HU Zhigang, LI Keqin, et al. Variation-aware cloud service selection via collaborative QoS prediction[J]. IEEE Transactions on Services Computing, 2021, 14(6): 1954–1969. doi: 10.1109/TSC.2019.2895784
|
[3] |
LI Chunlin, BAI Jingpan, and TANG Jianhang. Joint optimization of data placement and scheduling for improving user experience in edge computing[J]. Journal of Parallel and Distributed Computing, 2019, 125: 93–105. doi: 10.1016/j.jpdc.2018.11.006
|
[4] |
DENG Shuiguang, ZHAO Hailiang, YIN Jianwei, et al. Edge intelligence: The confluence of edge computing and artificial intelligence[J]. IEEE Internet of Things Journal, 2020, 7(8): 7457–7469. doi: 10.1109/JIOT.2020.2984887
|
[5] |
LI He, OTA K, and DONG Mianxiong. Learning IoT in edge: Deep learning for the internet of things with edge computing[J]. IEEE Network, 2018, 32(1): 96–101. doi: 10.1109/MNET.2018.1700202
|
[6] |
CHEN Lulu, XU Yangchuan, LU Zhihui, et al. IoT microservice deployment in edge-cloud hybrid environment using reinforcement learning[J]. IEEE Internet of Things Journal, 2021, 8(16): 12610–12622. doi: 10.1109/JIOT.2020.3014970
|
[7] |
MAZLAMI G, CITO J, and LEITNER P. Extraction of microservices from monolithic software architectures[C]. 2017 IEEE International Conference on Web Services, Honolulu, USA, 2017: 524–531.
|
[8] |
KANG Hui, LE M, and TAO Shu. Container and microservice driven design for cloud infrastructure DevOps[C]. 2016 IEEE International Conference on Cloud Engineering, Berlin, Germany, 2016: 202–211.
|
[9] |
ZHOU Ao, WANG Shangguang, WAN Shaohua, et al. LMM: Latency-aware micro-service mashup in mobile edge computing environment[J]. Neural Computing and Applications, 2020, 32(19): 15411–15425. doi: 10.1007/s00521-019-04693-w
|
[10] |
DING Zhijun, WANG Sheng, and PAN Meiqin. QoS-constrained service selection for networked microservices[J]. IEEE Access, 2020, 8: 39285–39299. doi: 10.1109/ACCESS.2020.2974188
|
[11] |
ZHANG Haitao, YANG Ning, XU Zhengjun, et al. Microservice based video cloud platform with performance-aware service path selection[C]. 2018 IEEE International Conference on Web Services, San Francisco, USA, 2018: 306–309.
|
[12] |
LI Songyuan, HUANG Jiwei, CHENG Bo, et al. FASS: A fairness-aware approach for concurrent service selection with constraints[C]. 2019 IEEE International Conference on Web Services, Milan, Italy, 2019: 255–259.
|
[13] |
陈昊崴, 邓水光, 赵海亮, 等. 面向移动边缘的组合服务选择及优化[J]. 计算机学报, 2022, 45(1): 82–97. doi: 10.11897/SP.J.1016.2022.00082
CHEN Haowei, DENG Shuiguang, ZHAO Hailiang, et al. Composite service selection and optimization for mobile edge systems[J]. Chinese Journal of Computers, 2022, 45(1): 82–97. doi: 10.11897/SP.J.1016.2022.00082
|
[14] |
RODRIGUEZ M A and BUYYA R. Scheduling dynamic workloads in multi-tenant scientific workflow as a service platforms[J]. Future Generation Computer Systems, 2018, 79: 739–750. doi: 10.1016/j.future.2017.05.009
|
[15] |
MSEDDI A, JAAFAR W, ELBIAZE H, et al. Joint container placement and task provisioning in dynamic fog computing[J]. IEEE Internet of Things Journal, 2019, 6(6): 10028–10040. doi: 10.1109/JIOT.2019.2935056
|
[16] |
TANG Zhiqing, ZHOU Xiaojie, ZHANG Fuming, et al. Migration modeling and learning algorithms for containers in fog computing[J]. IEEE Transactions on Services Computing, 2019, 12(5): 712–725. doi: 10.1109/TSC.2018.2827070
|
[17] |
GOUDARZI M, WU Huaming, PALANISWAMI M, et al. An application placement technique for concurrent IoT applications in edge and fog computing environments[J]. IEEE Transactions on Mobile Computing, 2021, 20(4): 1298–1311. doi: 10.1109/TMC.2020.2967041
|
[18] |
HUANG Xumin, YU Rong, XIE Shengli, et al. Task-container matching game for computation offloading in vehicular edge computing and networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6242–6255. doi: 10.1109/TITS.2020.2990462
|
[19] |
LIAO Zhuofan, PENG Jingsheng, XIONG Bing, et al. Adaptive offloading in mobile-edge computing for ultra-dense cellular networks based on genetic algorithm[J]. Journal of Cloud Computing, 2021, 10(1): 15. doi: 10.1186/s13677-021-00232-y
|
[20] |
YOU Qian and TANG Bing. Efficient task offloading using particle swarm optimization algorithm in edge computing for industrial internet of things[J]. Journal of Cloud Computing, 2021, 10(1): 41. doi: 10.1186/s13677-021-00256-4
|
[21] |
BHARATHI S, CHERVENAK A, DEELMAN E, et al. Characterization of scientific workflows[C]. The 2008 Third Workshop on Workflows in Support of Large-Scale Science, Austin, USA, 2008: 1–10.
|
[22] |
WU Hongyue, DENG Shuiguang, LI Wei, et al. Service selection for composition in mobile edge computing systems[C]. 2018 IEEE International Conference on Web Services, San Francisco, USA, 2018: 355–358.
|