Advanced Search
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
ZHOU Liangjiang, WANG Bingnan, WANG Yachao, ZHU Yongtao, JIAO Zekun, SONG Chen, WANG Zhongbin, HAN Dong, DING Chibiao. Preliminary Process of Airborne Multidimensional Space Joint-observation SAR System[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1243-1253. doi: 10.11999/JEIT220250
Citation: ZHOU Liangjiang, WANG Bingnan, WANG Yachao, ZHU Yongtao, JIAO Zekun, SONG Chen, WANG Zhongbin, HAN Dong, DING Chibiao. Preliminary Process of Airborne Multidimensional Space Joint-observation SAR System[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1243-1253. doi: 10.11999/JEIT220250

Preliminary Process of Airborne Multidimensional Space Joint-observation SAR System

doi: 10.11999/JEIT220250
  • Received Date: 2022-03-10
  • Rev Recd Date: 2020-06-20
  • Available Online: 2022-06-27
  • Publish Date: 2023-04-10
  • With the development of Synthetic Aperture Radar (SAR) technology, Multidimensional Space Joint-observation, which includes polarimetry, frequency, angle, and time spaces, has become an important trend in SAR development, but there are few reports on systems and experiments about it. In this paper, the capabilities of the airborne Multidimensional Space Joint-observation SAR(MSJosSAR)system are briefly described and the technical characteristics of the system are summarized. A SAR consistently imaging algorithm is proposed and the registration accuracy of Multiband image is better than 1 pixel. The preliminary process of three multidimensional space joint-observations, including multi-band polarization angle feature quantity, multi-aspect tomography three-dimensional reconstruction, are analyzed, multitemporal coherence change detection, which verify the ability of multidimensional space joint-observation.
  • loading
  • [1]
    PONCE O, PRATS-IRAOLA P, SCHEIBER R, et al. Polarimetric 3-D reconstruction from multicircular SAR at P-band[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 803–807. doi: 10.1109/LGRS.2013.2279236
    [2]
    MONTI-GUARNIERI A V, BROVELLI M A, MANZONI M, et al. Coherent change detection for multipass SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6811–6822. doi: 10.1109/TGRS.2018.2843560
    [3]
    冀广宇, 董勇伟, 李焱磊, 等. 一种基于概率图模型的多时相SAR相干变化检测方法[J]. 电子与信息学报, 2017, 39(12): 2912–2920. doi: 10.11999/JEIT170208

    JI Guangyu, DONG Yongwei, LI Yanlei, et al. A multi-temporal SAR coherent change detection method based on probabilistic graphical models[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2912–2920. doi: 10.11999/JEIT170208
    [4]
    HENSLEY S, CHAPIN E, FREEDMAN A, et al. First P-band results using the GeoSAR mapping system[C]. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001: 126–128.
    [5]
    KOBAYASHI T, UMEHARA T, UEMOTO J, et al. Evaluation of digital elevation model generated by an airborne interferometric SAR (Pi-SAR2)[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, Canada, 2014: 378–381.
    [6]
    ZEBKER H A, MADSEN S N, MARTIN J, et al. The TOPSAR interferometric radar topographic mapping instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 933–940. doi: 10.1109/36.175328
    [7]
    GRAY A L and FARRIS-MANNING P J. Repeat-pass interferometry with airborne synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 180–191. doi: 10.1109/36.210459
    [8]
    DREUILLET P, CANTALLOUBE H, COLIN E, et al. The ONERA RAMSES SAR: Latest significant results and future developments[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 7.
    [9]
    DU PLESSIS O R, NOUVEL J F, BAQUÉ R, et al. ONERA SAR facilities[J]. IEEE Aerospace and Electronic Systems Magazine, 2011, 26(11): 24–30. doi: 10.1109/MAES.2011.6070278
    [10]
    ROMBACH M and MOREIRA J. Description and applications of the multipolarized dual band OrbiSAR-1 InSAR sensor[C]. 2003 Proceedings of the International Conference on Radar, Adelaide, Australia, 2003: 245–250.
    [11]
    REIGBER A, SCHEIBER R, JAGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759–783. doi: 10.1109/JPROC.2012.2220511
    [12]
    XIANG Maosheng, WU Yirong, LI Shaoen, et al. Introduction on an experimental airborne InSAR system[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05, Seoul, Korea, 2005: 4809–4812.
    [13]
    黄国满. 机载多波段多极化干涉SAR测图系统—CASMSAR[J]. 测绘科学, 2014, 39(8): 111–115. doi: 10.16251/j.cnki.1009-2307.2014.08.011

    HUANG Guoman. An airborne interferometric SAR mapping system with multi-band and multi-polarization-CASMSAR[J]. Science of Surveying and Mapping, 2014, 39(8): 111–115. doi: 10.16251/j.cnki.1009-2307.2014.08.011
    [14]
    REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873
    [15]
    BARBER J. A generalized likelihood ratio test for coherent change detection in polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1873–1877. doi: 10.1109/LGRS.2015.2433134
    [16]
    WANG Zhongbin, WANG Bingnan, XIANG Maosheng, et al. A coherence improvement method based on sub-aperture InSAR for human activity detection[J]. Sensors, 2021, 21(4): 1424. doi: 10.3390/s21041424
    [17]
    JUNG J, KIM D J, LAVALLE M, et al. Coherent change detection using InSAR temporal decorrelation model: A case study for volcanic ash detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5765–5775. doi: 10.1109/TGRS.2016.2572166
    [18]
    REIGBER A, JÄGER M, and KROGAGER E. Polarimetric SAR change detection in multiple frequency bands for environmental monitoring in Arctic regions[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 5702–5705.
    [19]
    ZHANG Xiaojie, ZENG Qiming, JIAO Jian, et al. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 111: 32–44. doi: 10.1016/j.isprsjprs.2015.11.005
    [20]
    SCHMITT M. Three-dimensional reconstruction of urban areas by multi-aspect TomoSAR data fusion[C]. 2015 Joint Urban Remote Sensing Event, Lausanne, Switzerland, 2015: 1–4.
    [21]
    SCHMITT M, SHAHZAD M, and ZHU Xiaoxiang. Reconstruction of individual trees from multi-aspect TomoSAR data[J]. Remote Sensing of Environment, 2015, 165: 175–185. doi: 10.1016/j.rse.2015.05.012
    [22]
    PONCE O, PRATS-IRAOLA P, SCHEIBER R, et al. First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6170–6196. doi: 10.1109/TGRS.2016.2582959
    [23]
    JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013
    [24]
    丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging——from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [25]
    丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063

    DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063
    [26]
    吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047

    WU Yirong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047
    [27]
    TENG Fei, LIN Yun, WANG Yanping, et al. An anisotropic scattering analysis method based on the statistical properties of multi-angular SAR images[J]. Remote Sensing, 2020, 12(13): 2152. doi: 10.3390/rs12132152
    [28]
    HAN Dong, ZHOU Liangjiang, JIAO Zekun, et al. Efficient 3D image reconstruction of airborne TomoSAR based on back projection and improved adaptive ISTA[J]. IEEE Access, 2021, 9: 47399–47410. doi: 10.1109/ACCESS.2021.3066984
    [29]
    HAN Dong, ZHOU Liangjiang, JIAO Zekun, et al. Panoramic 3D reconstruction method for SAR tomography based on multi-azimuth observations[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 4798–4801.
    [30]
    WANG Zhongbin, WANG Yachao, WANG Bingnan, et al. Human activity detection based on multipass airborne InSAR coherence matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4013905. doi: 10.1109/LGRS.2021.3077614
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (851) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return