Citation: | ZHOU Liangjiang, WANG Bingnan, WANG Yachao, ZHU Yongtao, JIAO Zekun, SONG Chen, WANG Zhongbin, HAN Dong, DING Chibiao. Preliminary Process of Airborne Multidimensional Space Joint-observation SAR System[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1243-1253. doi: 10.11999/JEIT220250 |
[1] |
PONCE O, PRATS-IRAOLA P, SCHEIBER R, et al. Polarimetric 3-D reconstruction from multicircular SAR at P-band[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 803–807. doi: 10.1109/LGRS.2013.2279236
|
[2] |
MONTI-GUARNIERI A V, BROVELLI M A, MANZONI M, et al. Coherent change detection for multipass SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6811–6822. doi: 10.1109/TGRS.2018.2843560
|
[3] |
冀广宇, 董勇伟, 李焱磊, 等. 一种基于概率图模型的多时相SAR相干变化检测方法[J]. 电子与信息学报, 2017, 39(12): 2912–2920. doi: 10.11999/JEIT170208
JI Guangyu, DONG Yongwei, LI Yanlei, et al. A multi-temporal SAR coherent change detection method based on probabilistic graphical models[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2912–2920. doi: 10.11999/JEIT170208
|
[4] |
HENSLEY S, CHAPIN E, FREEDMAN A, et al. First P-band results using the GeoSAR mapping system[C]. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001: 126–128.
|
[5] |
KOBAYASHI T, UMEHARA T, UEMOTO J, et al. Evaluation of digital elevation model generated by an airborne interferometric SAR (Pi-SAR2)[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, Canada, 2014: 378–381.
|
[6] |
ZEBKER H A, MADSEN S N, MARTIN J, et al. The TOPSAR interferometric radar topographic mapping instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 933–940. doi: 10.1109/36.175328
|
[7] |
GRAY A L and FARRIS-MANNING P J. Repeat-pass interferometry with airborne synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 180–191. doi: 10.1109/36.210459
|
[8] |
DREUILLET P, CANTALLOUBE H, COLIN E, et al. The ONERA RAMSES SAR: Latest significant results and future developments[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 7.
|
[9] |
DU PLESSIS O R, NOUVEL J F, BAQUÉ R, et al. ONERA SAR facilities[J]. IEEE Aerospace and Electronic Systems Magazine, 2011, 26(11): 24–30. doi: 10.1109/MAES.2011.6070278
|
[10] |
ROMBACH M and MOREIRA J. Description and applications of the multipolarized dual band OrbiSAR-1 InSAR sensor[C]. 2003 Proceedings of the International Conference on Radar, Adelaide, Australia, 2003: 245–250.
|
[11] |
REIGBER A, SCHEIBER R, JAGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759–783. doi: 10.1109/JPROC.2012.2220511
|
[12] |
XIANG Maosheng, WU Yirong, LI Shaoen, et al. Introduction on an experimental airborne InSAR system[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05, Seoul, Korea, 2005: 4809–4812.
|
[13] |
黄国满. 机载多波段多极化干涉SAR测图系统—CASMSAR[J]. 测绘科学, 2014, 39(8): 111–115. doi: 10.16251/j.cnki.1009-2307.2014.08.011
HUANG Guoman. An airborne interferometric SAR mapping system with multi-band and multi-polarization-CASMSAR[J]. Science of Surveying and Mapping, 2014, 39(8): 111–115. doi: 10.16251/j.cnki.1009-2307.2014.08.011
|
[14] |
REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873
|
[15] |
BARBER J. A generalized likelihood ratio test for coherent change detection in polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1873–1877. doi: 10.1109/LGRS.2015.2433134
|
[16] |
WANG Zhongbin, WANG Bingnan, XIANG Maosheng, et al. A coherence improvement method based on sub-aperture InSAR for human activity detection[J]. Sensors, 2021, 21(4): 1424. doi: 10.3390/s21041424
|
[17] |
JUNG J, KIM D J, LAVALLE M, et al. Coherent change detection using InSAR temporal decorrelation model: A case study for volcanic ash detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5765–5775. doi: 10.1109/TGRS.2016.2572166
|
[18] |
REIGBER A, JÄGER M, and KROGAGER E. Polarimetric SAR change detection in multiple frequency bands for environmental monitoring in Arctic regions[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 5702–5705.
|
[19] |
ZHANG Xiaojie, ZENG Qiming, JIAO Jian, et al. Fusion of space-borne multi-baseline and multi-frequency interferometric results based on extended Kalman filter to generate high quality DEMs[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 111: 32–44. doi: 10.1016/j.isprsjprs.2015.11.005
|
[20] |
SCHMITT M. Three-dimensional reconstruction of urban areas by multi-aspect TomoSAR data fusion[C]. 2015 Joint Urban Remote Sensing Event, Lausanne, Switzerland, 2015: 1–4.
|
[21] |
SCHMITT M, SHAHZAD M, and ZHU Xiaoxiang. Reconstruction of individual trees from multi-aspect TomoSAR data[J]. Remote Sensing of Environment, 2015, 165: 175–185. doi: 10.1016/j.rse.2015.05.012
|
[22] |
PONCE O, PRATS-IRAOLA P, SCHEIBER R, et al. First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6170–6196. doi: 10.1109/TGRS.2016.2582959
|
[23] |
JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013
|
[24] |
丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090
DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging——from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
|
[25] |
丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063
DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063
|
[26] |
吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047
WU Yirong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047
|
[27] |
TENG Fei, LIN Yun, WANG Yanping, et al. An anisotropic scattering analysis method based on the statistical properties of multi-angular SAR images[J]. Remote Sensing, 2020, 12(13): 2152. doi: 10.3390/rs12132152
|
[28] |
HAN Dong, ZHOU Liangjiang, JIAO Zekun, et al. Efficient 3D image reconstruction of airborne TomoSAR based on back projection and improved adaptive ISTA[J]. IEEE Access, 2021, 9: 47399–47410. doi: 10.1109/ACCESS.2021.3066984
|
[29] |
HAN Dong, ZHOU Liangjiang, JIAO Zekun, et al. Panoramic 3D reconstruction method for SAR tomography based on multi-azimuth observations[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 4798–4801.
|
[30] |
WANG Zhongbin, WANG Yachao, WANG Bingnan, et al. Human activity detection based on multipass airborne InSAR coherence matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4013905. doi: 10.1109/LGRS.2021.3077614
|