Citation: | SHI Jianfeng, YANG Zhaohui, HUANG Nuo, CHEN Xiao, ZHANG Yujie, CHEN Ming. A Survey on User-centric Networks for 6G[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1873-1887. doi: 10.11999/JEIT220242 |
[1] |
Cisco Visual Networking Index. Global mobile data traffic forecast update, 2017–2022[R]. White Paper, 2019.
|
[2] |
FEHSKE A, FETTWEIS G, MALMODIN J, et al. The global footprint of mobile communications: The ecological and economic perspective[J]. IEEE Communications Magazine, 2011, 49(8): 55–62. doi: 10.1109/MCOM.2011.5978416
|
[3] |
XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
|
[4] |
XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798
|
[5] |
XU Yongjun, ZHAO Xiaohui, and LIANG Yingchang. Robust power control and beamforming in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1834–1857. doi: 10.1109/COMST.2015.2425040
|
[6] |
YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6
|
[7] |
KASI S K, HASHMI U S, NABEEL M, et al. Analysis of area spectral & energy efficiency in a CoMP-enabled user-centric cloud RAN[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(4): 1999–2015. doi: 10.1109/TGCN.2021.3093390
|
[8] |
PENG Mugen, SUN Yaohua, LI Xuelong, et al. Recent advances in cloud radio access networks: System architectures, key techniques, and open issues[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2282–2308. doi: 10.1109/COMST.2016.2548658
|
[9] |
CHECKO A, CHRISTIANSEN H L, YAN Ying, et al. Cloud RAN for mobile networks-A technology overview[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1): 405–426. doi: 10.1109/COMST.2014.2355255
|
[10] |
BOCCARDI F, HEANTH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74–80. doi: 10.1109/MCOM.2014.6736746
|
[11] |
3GPP Technical Specification 36.401–2020. Evolved Universal Terrestrial Radio Access Network (E-UTRAN): Architecture description[TS]. (Release 16), 2020.
|
[12] |
BOCCARDI F, ANDREWS J, ELSHAER H, et al. Why to decouple the uplink and downlink in cellular networks and how to do it[J]. IEEE Communications Magazine, 2016, 54(3): 110–117. doi: 10.1109/MCOM.2016.7432156
|
[13] |
SHARMA T, CHEHRI A, and FORTIER P. Review of optical and wireless backhaul networks and emerging trends of next generation 5G and 6G technologies[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(2): e4155. doi: 10.1002/ett.4155
|
[14] |
TEZERGIL B and ONUR E. Wireless backhaul in 5G and beyond: Issues, challenges and opportunities[J]. arXiv preprint arXiv: 2103.08234, 2021.
|
[15] |
XU Xiao, RAO Xiongbin, and LAU V K N. Active user detection and channel estimation in uplink CRAN systems[C]. 2015 IEEE International Conference on Communications (ICC), London, UK, 2015: 2727–2732.
|
[16] |
HE Qi, QUEK T Q S, CHEN Zhi, et al. . Compressive channel estimation and multi-user detection in C-RAN[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6.
|
[17] |
HE Qi, QUEK T Q S, CHEN Zhi, et al. Compressive channel estimation and multi-user detection in C-RAN with low-complexity methods[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3931–3944. doi: 10.1109/TWC.2018.2818125
|
[18] |
ZHANG Jianwen, YUAN Xiaojun, and ZHANG Yingjun. Locally orthogonal training design in cloud-RANs[C]. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, USA, 2016: 1–6.
|
[19] |
ZHANG Jianwen, YUAN Xiaojun, and ZHANG Yingjun. Locally orthogonal training design for cloud-RANs based on graph coloring[J]. IEEE Transactions on Wireless Communications, 2017, 16(10): 6426–6437. doi: 10.1109/TWC.2017.2723471
|
[20] |
STEPHEN R G and ZHANG Rui. Uplink channel estimation and data transmission in millimeter-wave CRAN with lens antenna arrays[J]. IEEE Transactions on Communications, 2018, 66(12): 6542–6555. doi: 10.1109/TCOMM.2018.2859996
|
[21] |
WANG Jingchao, YI Jie, HAN Rui, et al. Variational Bayesian inference for channel estimation and user activity detection in C-RAN[J]. IEEE Wireless Communications Letters, 2020, 9(7): 953–956. doi: 10.1109/LWC.2020.2975785
|
[22] |
LIU Xuan, SHI Yuanming, ZHANG Jun, et al. Massive CSI acquisition for dense cloud-RANs with spatial-temporal dynamics[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2557–2570. doi: 10.1109/TWC.2018.2797969
|
[23] |
YANG Yuwen, GAO Feifei, MA Xiaoli, et al. Deep learning-based channel estimation for doubly selective fading channels[J]. IEEE Access, 2019: 36579–36589. doi: 10.1109/ACCESS.2019.2901066
|
[24] |
BAI Qinbo, WANG Jintao, ZHANG Yue, et al. Deep learning-based channel estimation algorithm over time selective fading channels[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(1): 125–134. doi: 10.1109/TCCN.2019.2943455
|
[25] |
XU Zhinan, HOFER M, and ZEMEN T. A time-variant channel prediction and feedback framework for interference alignment[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 5961–5973. doi: 10.1109/TVT.2017.2647880
|
[26] |
UEHASHI S, OGAWA Y, NISHIMURA T, et al. Prediction of time-varying multi-user MIMO channels based on DOA estimation using compressed sensing[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 565–577. doi: 10.1109/TVT.2018.2882214
|
[27] |
CAREEM M A A and DUTTA A. Real-time prediction of non-stationary wireless channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 7836–7850. doi: 10.1109/TWC.2020.3016962
|
[28] |
HERATH J D, SEETHARAM A, and RAMESH A. A deep learning model for wireless channel quality prediction[C]. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6.
|
[29] |
JIANG Wei and SCHOTTEN H D. Recurrent neural networks with long short-term memory for fading channel prediction[C]. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020: 1–5.
|
[30] |
JIANG Wei and SCHOTTEN H D. Neural network-based fading channel prediction: A comprehensive overview[J]. IEEE Access, 2019, 7: 118112–118124. doi: 10.1109/ACCESS.2019.2937588
|
[31] |
JIANG Wei, STRUFE M, and SCHOTTEN H D. Long-range MIMO channel prediction using recurrent neural networks[C]. 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, USA, 2020: 1–6. doi: CCNC46108.2020.9045219.
|
[32] |
JIANG Wei and SCHOTTEN H D. A deep learning method to predict fading channel in multi-antenna systems[C]. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020: 1–5.
|
[33] |
JIANG Wei and SCHOTTEN H D. Deep learning for fading channel prediction[J]. IEEE Open Journal of the Communications Society, 2020, 1: 320–332. doi: 10.1109/OJCOMS.2020.2982513
|
[34] |
LUO Changqing, JI Jinlong, WANG Qianlong, et al. Channel state information prediction for 5G wireless communications: A deep learning approach[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 227–236. doi: 10.1109/TNSE.2018.2848960
|
[35] |
EOM C and LEE C. Hybrid neural network-based fading channel prediction for link adaptation[J]. IEEE Access, 2021, 9: 117257–117266. doi: 10.1109/ACCESS.2021.3106739
|
[36] |
CHEN Ying and ZHANG Hongtao. Outage probability and average rate analysis of user-centric ultra-dense networks[C]. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6.
|
[37] |
ABBAS Z H, ULLAH A, ABBAS G, et al. Outage probability analysis of user-centric SBS-based HCNets under hybrid rician/rayleigh fading[J]. IEEE Communications Letters, 2020, 24(2): 297–301. doi: 10.1109/LCOMM.2019.2959578
|
[38] |
YANG Zheng, DING Zhiguo, and FAN Pingzhi. Performance analysis of cloud radio access networks with uniformly distributed base stations[J]. IEEE Transactions on Vehicular Technology, 2016, 65(1): 472–477. doi: 10.1109/TVT.2015.2394458
|
[39] |
ZHANG Yingxiao and ZHANG Yingjun. User-centric virtual cell design for cloud radio access networks[C]. 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Toronto, Canada, 2014: 249–253.
|
[40] |
LIN Yicheng and YU Wei. Ergodic capacity analysis of downlink distributed antenna systems using stochastic geometry[C]. 2013 IEEE International Conference on Communications, Budapest, Hungary, 2013: 3338–3343.
|
[41] |
ZHAO Zhongyuan, PENG Mugen, DING Zhiguo, et al. Cluster formation in cloud-radio access networks: Performance analysis and algorithms design[C]. 2015 IEEE International Conference on Communications (ICC), London, UK, 2015: 3903–3908.
|
[42] |
HUMADI K, TRIGUI I, ZHU Weiping, et al. Coverage analysis of user-centric dense terahertz networks[J]. IEEE Communications Letters, 2021, 25(9): 2864–2868. doi: 10.1109/LCOMM.2021.3091596
|
[43] |
KHAN F A, HE Huasen, XUE Jiang, et al. Performance analysis of cloud radio access networks with distributed multiple antenna remote radio heads[J]. IEEE Transactions on Signal Processing, 2015, 63(18): 4784–4799. doi: 10.1109/TSP.2015.2446440
|
[44] |
PENG Mugen, YAN Shi, and POOR H V. Ergodic capacity analysis of remote radio head associations in cloud radio access networks[J]. IEEE Wireless Communications Letters, 2014, 3(4): 365–368. doi: 10.1109/LWC.2014.2317476
|
[45] |
ZHU Caiyi and YU Wei. Stochastic modeling and analysis of user-centric network MIMO systems[J]. IEEE Transactions on Communications, 2018, 66(12): 6176–6189. doi: 10.1109/TCOMM.2018.2867458
|
[46] |
MO Yijun, XIE Juan, and HUANG Benxiong. Handoff in virtual cell system based on distributed antenna[C]. 2006 International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 2006: 1–4.
|
[47] |
BAO Wei and LIANG Ben. Optimizing cluster size through handoff analysis in user-centric cooperative wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(2): 766–778. doi: 10.1109/TWC.2017.2771343
|
[48] |
ULLAH A, ABBAS Z H, MUHAMMAD F, et al. Uplink performance analysis of user-centric small cell aided dense HCNets with uplink-downlink decoupling[J]. IEEE Access, 2020, 8: 148460–148474. doi: 10.1109/ACCESS.2020.3015915
|
[49] |
ALONZO M, BUZZI S, ZAPPONE A, et al. Energy-efficient power control in cell-free and user-centric massive MIMO at millimeter wave[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(3): 651–663. doi: 10.1109/TGCN.2019.2908228
|
[50] |
MAKHANBET M and LV T. User-centric online learning of power allocation in H-CRAN[C]. 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 2019: 1–6.
|
[51] |
IQBAL A, THAM M L, and CHANG Y C. Double deep Q-network for power allocation in cloud radio access network[C]. 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 2020: 272–277.
|
[52] |
IQBAL A, THAM M L, and CHANG Y C. Double deep Q-network-based energy-efficient resource allocation in cloud radio access network[J]. IEEE Access, 2021, 9: 20440–20449. doi: 10.1109/ACCESS.2021.3054909
|
[53] |
SINGH R, SALUJA D, and KUMAR S. Graph based training resource allocation scheme for CoMP transmission in CRAN: A low complexity solution[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(3): 2402–2411. doi: 10.1109/TNSE.2021.3093311
|
[54] |
RODOSHI R T, KIM T, and CHOI W. Deep reinforcement learning based dynamic resource allocation in cloud radio access networks[C]. 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), 2020: 618–623.
|
[55] |
BARAHMAN M, CORREIA L M, and FERREIRA L S. An efficient QoS-aware computational resource allocation scheme in C-RAN[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6.
|
[56] |
MOOSAVI N, SINAIE M, AZMI P, et al. Delay aware resource allocation with radio remote head cooperation in user-centric C-RAN[J]. IEEE Communications Letters, 2021, 25(7): 2343–2347. doi: 10.1109/LCOMM.2021.3069235
|
[57] |
HE Chunlong, LI G Y, ZHENG Fuchun, et al. Energy-efficient resource allocation in OFDM systems with distributed antennas[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1223–1231. doi: 10.1109/TVT.2013.2282373
|
[58] |
SHARARA M, HOTEIT S, BROWN P, et al. Coordination between radio and computing schedulers in Cloud-RAN[C]. IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 2021: 37–44.
|
[59] |
SHARARA M, HOTEIT S, and VÈQUE V. A recurrent neural network based approach for coordinating radio and computing resources allocation in Cloud-RAN[C]. 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), Paris, France, 2021: 1–7.
|
[60] |
KADAN F E and YILMAZ A Ö. Beamformer design with smooth constraint-free approximation in downlink cloud radio access networks[J]. IEEE Access, 2021, 9: 36399–36416. doi: 10.1109/ACCESS.2021.3063668
|
[61] |
TAN Fangqing, WU Peiran, WU Y C, et al. Cooperative beamforming for wireless fronthaul and access links in ultra-dense C-RANs with SWIPT: A first-order approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(5): 1242–1257. doi: 10.1109/JSTSP.2021.3086982
|
[62] |
LUO Yifan, YANG Jiawei, XU Wei, et al. Power consumption optimization using gradient boosting aided deep Q-network in C-RANs[J]. IEEE Access, 2020, 8: 46811–46823. doi: 10.1109/ACCESS.2020.2978935
|
[63] |
ZHU Huiling and WANG Jiangzhou. Radio resource allocation in multiuser distributed antenna systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(10): 2058–2066. doi: 10.1109/JSAC.2013.131008
|
[64] |
ZHANG Guobin, KE Feng, ZHANG Haijun, et al. User access and resource allocation in full-duplex user-centric ultra-dense networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12015–12030. doi: 10.1109/TVT.2020.3010364
|
[65] |
ZHANG Long, ZHANG Guobin, ZHAO Xiaofang, et al. Energy efficient resource optimization in user-centric UDNs with NOMA and beamforming[C]. 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 2020: 115–121.
|
[66] |
YU D, LEE H, PARK S H, et al. Deep learning methods for joint optimization of beamforming and fronthaul quantization in cloud radio access networks[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2180–2184. doi: 10.1109/LWC.2021.3095500
|
[67] |
SHI Jianfeng, XU Hao, YANG Zhaohui, et al. Energy efficient beamforming for user-centric virtual cell networks[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(3): 575–590. doi: 10.1109/TGCN.2019.2910827
|
[68] |
ZHAO Mingmin, CAI Yunlong, ZHAO Minjian, et al. Improving caching efficiency in content-aware C-RAN-based cooperative beamforming: A joint design approach[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 4125–4140. doi: 10.1109/TWC.2020.2979958
|
[69] |
ZHAO Mingmin, CAI Yunlong, ZHAO Minjian, et al. Joint content placement, RRH clustering and beamforming for cache-enabled Cloud-RAN[C]. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6.
|
[70] |
ZHOU Yanglin, CI Song, and YANG Yang. Energy-aware joint clustering and scheduling for multicast beamforming in Cloud-RAN downlink[J]. IEEE Wireless Communications Letters, 2020, 9(4): 461–464. doi: 10.1109/LWC.2019.2958929
|
[71] |
HE Yuan, DAI Lingcheng, and ZHANG Hongtao. Multi-branch deep residual learning for clustering and beamforming in user-centric network[J]. IEEE Communications Letters, 2020, 24(10): 2221–2225. doi: 10.1109/LCOMM.2020.3005947
|
[72] |
DU Gehui, WANG Luhan, LIAO Qing, et al. Deep neural network based cell sleeping control and beamforming optimization in Cloud-RAN[C]. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, USA, 2019: 1–5.
|
[73] |
PAN Cunhua, REN Hong, ELKASHLAN M, et al. Robust beamforming design for ultra-dense user-centric C-RAN in the face of realistic pilot contamination and limited feedback[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 780–795. doi: 10.1109/TWC.2018.2882442
|
[74] |
TANG Jianhua, QUEK T Q S, CHANG T H, et al. Systematic resource allocation in cloud RAN with caching as a service under two timescales[J]. IEEE Transactions on Communications, 2019, 67(11): 7755–7770. doi: 10.1109/TCOMM.2019.2934854
|
[75] |
SHI Jianfeng, CHEN Xiao, HUANG Nuo, et al. Power-efficient transmission for user-centric networks with limited fronthaul capacity and computation resource[J]. IEEE Transactions on Communications, 2020, 68(9): 5649–5660. doi: 10.1109/TCOMM.2020.3002942
|
[76] |
TANG Weijun and FENG Suili. User selection and power minimization in full-duplex cloud radio access networks[J]. IEEE Transactions on Signal Processing, 2019, 67(9): 2426–2438. doi: 10.1109/TSP.2019.2905804
|
[77] |
LI Nan, YAO Zhenjie, TU Yanhui, et al. Cooperative optimization for OFDMA resource allocation in multi-RRH millimeter-wave CRAN[J]. IEEE Access, 2021, 8: 164035–164044. doi: 10.1109/ACCESS.2020.3022363
|
[78] |
RODOSHI R T, KIM T, and CHOI W. Resource management in cloud radio access network: Conventional and new approaches[J]. Sensors, 2020, 20(9): 2708. doi: 10.3390/s20092708
|