Citation: | CAO Shaohua, CHEN Hui, CHEN Shu, ZHANG Hanqing, ZHANG Weishan. AccFed: Federated Learning Acceleration Based on Model Partitioning in Internet of Things[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1678-1687. doi: 10.11999/JEIT220240 |
[1] |
AAZAM M, ZEADALLY S, and HARRAS K A. Deploying fog computing in industrial internet of things and industry 4.0[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4674–4682. doi: 10.1109/TII.2018.2855198
|
[2] |
UR REHMAN M H, AHMED E, YAQOOB I, et al. Big data analytics in industrial IoT using a concentric computing model[J]. IEEE Communications Magazine, 2018, 56(2): 37–43. doi: 10.1109/MCOM.2018.1700632
|
[3] |
SHI Weisong, CAO Jie, ZHANG Quan, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637–646. doi: 10.1109/JIOT.2016.2579198
|
[4] |
MOHAMMED T, JOE-WONG C, BABBAR R, et al. Distributed inference acceleration with adaptive DNN partitioning and offloading[C]. Proceedings of 2020 IEEE Conference on Computer Communications, Toronto, Canada, 2020: 854–863.
|
[5] |
ZHANG Peiying, WANG Chao, JIANG Chunxiao, et al. Deep reinforcement learning assisted federated learning algorithm for data management of IIoT[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8475–8484. doi: 10.1109/TII.2021.3064351
|
[6] |
GAO Yansong, KIM M, ABUADBBA S, et al. End-to-end evaluation of federated learning and split learning for internet of things[C]. Proceedings of 2020 International Symposium on Reliable Distributed Systems (SRDS), Shanghai, China, 2020.
|
[7] |
YU Keping, TAN Liang, ALOQAILY M, et al. Blockchain-enhanced data sharing with traceable and direct revocation in IIoT[J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7669–7678. doi: 10.1109/TII.2021.3049141
|
[8] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[9] |
GUO Yeting, LIU Fang, CAI Zhiping, et al. FEEL: A federated edge learning system for efficient and privacy-preserving mobile healthcare[C]. Proceedings of the 49th International Conference on Parallel Processing-ICPP. Edmonton, Canada, 2020: 9.
|
[10] |
CAO Xiaowen, ZHU Guangxu, XU Jie, et al. Optimized power control for over-the-air federated edge learning[C]. ICC 2021-IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6.
|
[11] |
LO S K, LU Qinghua, WANG Chen, et al. A systematic literature review on federated machine learning: From a software engineering perspective[J]. ACM Computing Surveys, 2022, 54(5): 95. doi: 10.1145/3450288
|
[12] |
LI En, ZHOU Zhi, and CHEN Xu. Edge intelligence: On-demand deep learning model co-inference with device-edge synergy[C]. Proceedings of 2018 Workshop on Mobile Edge Communications, Budapest, Hungary, 2018: 31–36.
|
[13] |
KANG Yiping, HAUSWALD J, GAO Cao, et al. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge[J]. ACM SIGARCH Computer Architecture News, 2017, 45(1): 615–629. doi: 10.1145/3093337.3037698
|
[14] |
ESHRATIFAR A E, ABRISHAMI M S, and PEDRAM M. JointDNN: an efficient training and inference engine for intelligent mobile cloud computing services[J]. IEEE Transactions on Mobile Computing, 2021, 20(2): 565–576. doi: 10.1109/TMC.2019.2947893
|
[15] |
TANG Xin, CHEN Xu, ZENG Liekang, et al. Joint multiuser DNN partitioning and computational resource allocation for collaborative edge intelligence[J]. IEEE Internet of Things Journal, 2021, 8(12): 9511–9522. doi: 10.1109/JIOT.2020.3010258
|
[16] |
LI En, ZENG Liekang, ZHOU Zhi, et al. Edge AI: On-demand accelerating deep neural network inference via edge computing[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 447–457. doi: 10.1109/TWC.2019.2946140
|
[17] |
ELGAMAL T and NAHRSTEDT K. Serdab: An IoT framework for partitioning neural networks computation across multiple enclaves[C]. Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia, 2020: 519–528.
|
[18] |
ZHU Guangxu, DU Yuqing, GÜNDÜZ D, et al. One-bit over-the-air aggregation for communication-efficient federated edge learning: Design and convergence analysis[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 2120–2135. doi: 10.1109/TWC.2020.3039309
|
[19] |
DU Yuqing, YANG Sheng, and HUANG Kaibin. High-dimensional stochastic gradient quantization for communication-efficient edge learning[J]. IEEE Transactions on Signal Processing, 2020, 68: 2128–2142. doi: 10.1109/TSP.2020.2983166
|
[20] |
THAPA C, CHAMIKARA M A P, CAMTEPE S, et al. Splitfed: When federated learning meets split learning[J]. arXiv: 2004.12088, 2020.
|
[21] |
VEPAKOMMA P, GUPTA O, SWEDISH T, et al. Split learning for health: Distributed deep learning without sharing raw patient data[J]. arXiv: 1812.00564, 2018.
|
[22] |
ROMANINI D, HALL A J, PAPADOPOULOS P, et al. PyVertical: A vertical federated learning framework for multi-headed SplitNN[J]. arXiv: 2104.00489, 2021.
|
[23] |
TEERAPITTAYANON S, MCDANEL B, and KUNG H T. Branchynet: Fast inference via early exiting from deep neural networks[C]. Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 2016: 2464–2469.
|
[24] |
MCMAHAN H B, ANDREW G, ERLINGSSON U, et al. A general approach to adding differential privacy to iterative training procedures[J]. arXiv: 1812.06210, 2018.
|
[25] |
MCMAHAN H B, RAMAGE D, TALWAR K, et al. Learning differentially private language models without losing accuracy[J]. arXiv: 1710.06963, 2018.
|
[26] |
ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy[C]. Proceedings of 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 308–318.
|