Advanced Search
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
MIN Lin, LIU Xiangqian, HAO Xiaolong, GUO Zhengwei, LI Ning. Spaceborne Interrupted Frequency Modulate Continuous Wave SAR Imaging Based on Low-Rank Hankel Matrix Reconstruction Technique[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1285-1292. doi: 10.11999/JEIT220239
Citation: MIN Lin, LIU Xiangqian, HAO Xiaolong, GUO Zhengwei, LI Ning. Spaceborne Interrupted Frequency Modulate Continuous Wave SAR Imaging Based on Low-Rank Hankel Matrix Reconstruction Technique[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1285-1292. doi: 10.11999/JEIT220239

Spaceborne Interrupted Frequency Modulate Continuous Wave SAR Imaging Based on Low-Rank Hankel Matrix Reconstruction Technique

doi: 10.11999/JEIT220239
Funds:  The National Natural Science Foundation of China (61871175), The Natural Science Foundation of Henan Province (222300420115)
  • Received Date: 2022-03-29
  • Rev Recd Date: 2022-05-28
  • Available Online: 2022-06-14
  • Publish Date: 2023-04-10
  • The Interrupted Frequency Modulated Continuous Wave (IFMCW) Synthetic Aperture Radar (SAR) is a novel type of SAR system,which has the advantages of light weight, low cost, and low power consumption. The system subverts the design concept of the traditional Frequency Modulated Continuous Wave (FMCW) SAR system, which use a single antenna to transmit and receive signals.In this system, the transmitter and receiver operate at different time intervals, resulting in periodic gaps in the synthetic aperture. When the received echo data is imaged using traditional imaging algorithms, the artifacts will appear in the focused SAR image. In order to suppress effectively the appearance of artifacts, this paper proposes a new imaging algorithm for subaperture echo data processing, which is called Low-rank Hankel matrix Reconstruction Technique based on Subaperture Projection (LHRTSP). The experimental results show that the proposed method has better suppression effect on artifacts compared with the existing methods, which verifies the effectiveness and superiority of the proposed method.
  • loading
  • [1]
    李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116

    LI Chunsheng, WANG Weijie, WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics &Information Technology, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116
    [2]
    邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    [3]
    SALZMAN J, AKAMINE D, LEFEVRE R, et al. Interrupted synthetic aperture radar (SAR)[C]. Proceedings of the 2001 IEEE Radar Conference (Cat. No. 01CH37200), Atlanta, USA, 2001: 117–122.
    [4]
    AHMED N and UNDERWOOD C. Monostatic CW SAR concept for microsatellites[C]. 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 736–739.
    [5]
    王宝平. 线性调频连续波雷达信号泄漏对消技术的研究[D]. [硕士论文], 电子科技大学, 2013.

    WANG Baoping. Research of FMCW radar leakage signal cancellation techonology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2013.
    [6]
    LI Ning, WANG R, DENG Yunkai, et al. Improved full-aperture ScanSAR imaging algorithm based on aperture interpolation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1101–1105. doi: 10.1109/LGRS.2014.2384594
    [7]
    LI Ning, NIU Shilin, GUO Zhengwei, et al. Processing spaceborne interrupted FMCW SAR data with modified aperture interpolation technique[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6695–6698.
    [8]
    LIU Kang, YU Weidong, and LV Jiyu. Azimuth interrupted FMCW SAR for high-resolution imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4001105. doi: 10.1109/LGRS.2020.3019047
    [9]
    LIU Kang, YU Weidong, and LV Jiyu. Parameter design and imaging method of spaceborne azimuth interrupted FMCW SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4015505. doi: 10.1109/LGRS.2021.3095173
    [10]
    闵林, 刘向前, 李宁. 基于积累孔径插值技术的星载间断调频连续波SAR成像方法[J]. 电子与信息学报, 2022, 44(7): 2461–2468. doi: 10.11999/JEIT210140

    MIN Lin, LIU Xiangqian, and LI Ning. Spaceborne interrupted frequency modulation continuous wave SAR imaging based on accumulated aperture interpolation technique[J]. Journal of Electronics &Information Technology, 2022, 44(7): 2461–2468. doi: 10.11999/JEIT210140
    [11]
    HU Yue, LIU Xiaohan, and JACOB M. A generalized structured low-rank matrix completion algorithm for MR image recovery[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1841–1851. doi: 10.1109/TMI.2018.2886290
    [12]
    QU Xiaobo, MAYZEL M, CAI Jianfeng, et al. Accelerated NMR spectroscopy with low-rank reconstruction[J]. Angewandte Chemie International Edition, 2015, 54(3): 852–854. doi: 10.1002/anie.201409291
    [13]
    PRAMANIK A, AGGARWAL H K, and JACOB M. Deep generalization of structured low-rank algorithms (Deep-SLR)[J]. IEEE Transactions on Medical Imaging, 2020, 39(12): 4186–4197. doi: 10.1109/tmi.2020.3014581
    [14]
    FORNASIER M, RAUHUT H, and WARD R. Low-rank matrix recovery via iteratively reweighted least squares minimization[J]. SIAM Journal on Optimization, 2011, 21(4): 1614–1640. doi: 10.1137/100811404
    [15]
    ONGIE G and JACOB M. A fast algorithm for structured low-rank matrix recovery with applications to undersampled MRI reconstruction[C]. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 2016: 522–525.
    [16]
    ONGIE G and JACOB M. A fast algorithm for convolutional structured low-rank matrix recovery[J]. IEEE Transactions on Computational Imaging, 2017, 3(4): 535–550. doi: 10.1109/TCI.2017.2721819
    [17]
    QIU Tianyu, WANG Zi, LIU Huiting, et al. Review and prospect: NMR spectroscopy denoising and reconstruction with low-rank Hankel matrices and tensors[J]. Magnetic Resonance in Chemistry, 2021, 59(3): 324–345. doi: 10.1002/mrc.5082
    [18]
    CHEN Jinchi, GAO Weiguo, and WEI Ke. Exact matrix completion based on low rank Hankel structure in the Fourier domain[J]. Applied and Computational Harmonic Analysis, 2021, 55: 149–184. doi: 10.1016/j.acha.2021.05.002
    [19]
    LI Xi, LIU Guosui, and NI Jinlin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240–1252. doi: 10.1109/7.805442
    [20]
    李春升, 于泽, 陈杰. 高分辨率星载SAR成像与图像质量提升方法综述[J]. 雷达学报, 2019, 8(6): 717–731. doi: 10.12000/JR19085

    LI Chunsheng, YU Ze, and CHEN Jie. Overview of techniques for improving high-resolution spaceborne SAR imaging and image quality[J]. Journal of Radars, 2019, 8(6): 717–731. doi: 10.12000/JR19085
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (418) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return