Advanced Search
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LIU Yiduo, JI Hongbing, ZHANG Yongquan. A Multiple Extended Target Generalized Labeled Multi-Bernoulli Filter Based on Joint Likelihood Function[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1303-1312. doi: 10.11999/JEIT220213
Citation: LIU Yiduo, JI Hongbing, ZHANG Yongquan. A Multiple Extended Target Generalized Labeled Multi-Bernoulli Filter Based on Joint Likelihood Function[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1303-1312. doi: 10.11999/JEIT220213

A Multiple Extended Target Generalized Labeled Multi-Bernoulli Filter Based on Joint Likelihood Function

doi: 10.11999/JEIT220213
Funds:  The National Natural Science Foundation of China (61871301), China Postdoctoral Science Foundation (2020T130494, 2018M633470), The Fundamental Research Funds for the Central Universities (XJS210211)
  • Received Date: 2022-03-01
  • Rev Recd Date: 2022-07-08
  • Available Online: 2022-07-15
  • Publish Date: 2023-04-10
  • High-resolution radar systems monitor multiple extended targets with different shapes in a surveillance area. Reliable shapes estimation can effectively improve tracking performance and are crucial to battle-field situation evaluations. In this paper, a Joint Likelihood based Generalized Labeled Multi-Bernoulli (JL-GLMB) filter is proposed to estimate accurately the number of targets, target tracks, and target shapes. Firstly, the extended target is modeled as a star-convex set, and Gaussian components in the GLMB density are updated by the measurement transformation filter to improve the accuracy of state estimation. Then, a joint likelihood function is constructed by log-weighted fusion strategy to measure comprehensively the similarity between extended target and measurement cell. Finally, a fast approximation method for posterior probability density is proposed based on Gibbs sampling, which improves the accuracy and efficiency of the data association. Simulation results show that the proposed algorithm can effectively estimate multiple extended target states of different shapes, and provide stable cardinality estimation in the clutter environment compared to traditional multiple extended target tracking.
  • loading
  • [1]
    YU Miao, GONG Liyun, OH H, et al. Multiple model ballistic missile tracking with state-dependent transitions and gaussian particle filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1066–1081. doi: 10.1109/TAES.2017.2773258
    [2]
    李文娟, 顾红, 苏卫民. 基于多伯努利概率假设密度的扩展目标跟踪方法[J]. 电子与信息学报, 2016, 38(12): 3114–3121. doi: 10.11999/JEIT160372

    LI Wenjuan, GU Hong, and SU Weimin. Extended target tracking method based on Multi-Bernoulli probability hypothesis density[J]. Jounal of Electronics &Information Technology, 2016, 38(12): 3114–3121. doi: 10.11999/JEIT160372
    [3]
    YU Le, ZUO Yanchun, LIU Songhua, et al. False scattering center extraction based on template matching method[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(4): 720–724. doi: 10.1109/LAWP.2022.3143868
    [4]
    何祥宇, 李静, 杨数强, 等. 基于ET-PHD滤波器和变分贝叶斯近似的扩展目标跟踪算法[J]. 计算机应用, 2020, 40(12): 3701–3706. doi: 10.11772/j.issn.1001-9081.2020040451

    HE Xiangyu, LI Jing, YANG Shuqiang, et al. Extended target tracking algorithm based on ET-PHD filter and variational Bayesian approximation[J]. Journal of Computer Applications, 2020, 40(12): 3701–3706. doi: 10.11772/j.issn.1001-9081.2020040451
    [5]
    RUUD K A, BREKKE E F, and EIDSVIK J. LIDAR extended object tracking of a maritime vessel using an ellipsoidal contour model[C]. Sensor Data Fusion: Trends, Solutions, Applications, Bonn, Germany, 2018: 1–6.
    [6]
    ZHANG Xing, YAN Zhibin, CHEN Yunqi, et al. A novel particle filter for extended target tracking with random hypersurface model[J]. Applied Mathematics and Computation, 2022, 425: 127081. doi: 10.1016/j.amc.2022.127081
    [7]
    AKBARI B and ZHU Haibin. Tracking dependent extended targets using multi-output spatiotemporal Gaussian processes[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18301–18314. doi: 10.1109/TITS.2022.3154926
    [8]
    KAULBERSCH H, BAUM M, and WILLETT P. EM approach for tracking star-convex extended objects[C]. The 20th International Conference on Information Fusion, Xi'an, China, 2017: 1–7.
    [9]
    SUN Lifan, LAN Jian, and LI Xiaorong. Extended target tracking using star-convex model with non-linear inequality constraints[C]. The 31st Chinese Control Conference, Hefei, China, 2012: 3869–3874.
    [10]
    AFTAB W, DE FREITAS A, ARVANEH M, et al. A gaussian process convolution particle filter for multiple extended objects tracking with non-regular shapes[C]. The 21st International Conference on Information Fusion, Cambridge, UK, 2018: 1–8.
    [11]
    WAHLSTRÖM N and ÖZKAN E. Extended target tracking using gaussian processes[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4165–4178. doi: 10.1109/TSP.2015.2424194
    [12]
    LIU Yiduo, JI Hongbing, and ZHANG Yongquan. Measurement transformation algorithm for extended target tracking[J]. Signal Processing, 2021, 186: 108129. doi: 10.1016/j.sigpro.2021.108129
    [13]
    QIN Zheng, KIRUBARAJAN T, and LIANG Yangang. Application of an efficient graph-based partitioning algorithm for extended target tracking using GM-PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4451–4466. doi: 10.1109/TAES.2020.2990803
    [14]
    GRANSTROM K and ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657–5671. doi: 10.1109/TSP.2012.2212888
    [15]
    LUNDQUIST C, GRANSTRÖM K, and ORGUNER U. An extended target CPHD filter and a gamma gaussian inverse wishart implementation[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 472–483. doi: 10.1109/JSTSP.2013.2245632
    [16]
    VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822
    [17]
    BEARD M, REUTER S, GRANSTRÖM K, et al. A generalised labelled multi-bernoulli filter for extended multi-target tracking[C]. The 18th International Conference on Information Fusion, Washington, USA, 2015: 991–998.
    [18]
    陈辉, 李国财, 韩崇昭, 等. 高斯过程回归模型多扩展目标多伯努利滤波器[J]. 控制理论与应用, 2020, 37(9): 1931–1943. doi: 10.7641/CTA.2020.90978

    CHEN Hui, LI Guocai, HAN Chongzhao, et al. A multiple extended target multi-Bernouli filter based on Gaussian process regression model[J]. Control Theory &Applications, 2020, 37(9): 1931–1943. doi: 10.7641/CTA.2020.90978
    [19]
    SCHEEL A, REUTER S, and DIETMAYER K. Using separable likelihoods for laser-based vehicle tracking with a labeled multi-bernoulli filter[C]. The 19th International Conference on Information Fusion, Heidelberg, Germany, 2016: 1200–1207.
    [20]
    LI Fu, SHUGUROV I, BUSAM B, et al. PolarMesh: A star-convex 3D shape approximation for object pose estimation[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4416–4423. doi: 10.1109/LRA.2022.3147880
    [21]
    陈彦锡, 郭琨毅, 殷红成, 等. 复杂场景散射中心模型化与雷达成像应用[J]. 系统工程与电子技术, 2021, 43(10): 2733–2741. doi: 10.12305/j.issn.1001-506X.2021.10.05

    CHEN Yanxi, GUO Kunyi, YIN Hongcheng, et al. Scattering center modeling and radar imaging application in complex scenes[J]. Systems Engineering and Electronics, 2021, 43(10): 2733–2741. doi: 10.12305/j.issn.1001-506X.2021.10.05
    [22]
    王碧垚, 王永齐, 顾鹏. 考虑形状差异的RFS多目标跟踪性能评估方法[J]. 火力与指挥控制, 2021, 46(5): 58–63. doi: 10.3969/j.issn.1002-0640.2021.05.011

    WANG Biyao, WANG Yongqi, and GU Peng. Performance evaluation considering shape difference for multi-target tracking based on random finite set[J]. Fire Control &Command Control, 2021, 46(5): 58–63. doi: 10.3969/j.issn.1002-0640.2021.05.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (552) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return