Advanced Search
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
ZHOU Mu, ZHANG Jing, XIE Liangbo, HE Wei, LI Lingxia. Entangled Light Quantum Positioning Method Based on Adaptive Light Source Selection[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3058-3064. doi: 10.11999/JEIT220212
Citation: ZHOU Mu, ZHANG Jing, XIE Liangbo, HE Wei, LI Lingxia. Entangled Light Quantum Positioning Method Based on Adaptive Light Source Selection[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3058-3064. doi: 10.11999/JEIT220212

Entangled Light Quantum Positioning Method Based on Adaptive Light Source Selection

doi: 10.11999/JEIT220212
Funds:  The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-K202000605), The Special Project of Chongqing Technology Innovation and Application Development, The National Natural Science Foundation of China (61901076), The Postgraduate Scientific Research and Innovation Project of Chongqing (CYS21295)
  • Received Date: 2022-03-01
  • Rev Recd Date: 2022-05-26
  • Available Online: 2022-06-17
  • Publish Date: 2022-09-19
  • The entangled photon positioning method is one of the current research hotspots in the field of navigation and positioning. However, the existing methods consider rarely the influence of the dynamic changes of the scattering environment on the performance of propagation distance estimation in different light sources, resulting in the problem of low positioning accuracy and poor robustness. To solve this problem, an entangled light quantum positioning method is proposed based on adaptive light source selection. First of all, the mathematical relationship between the interference of different scattering environments and the light propagation distance in each light source is established, the average photon loss rate of each light source signal light time pulse sequence is calculated, and the time pulse sequence of each light source is dynamically grouped. Then, the optical time pulse sequence is matched, and the propagation distance of each light source in each group is obtained according to the second-order correlation curve of light. Finally, based on the relative error of each light source in each group, the light source with the smaller relative error in each group is dynamically selected for positioning. The experimental results show that the proposed method has high positioning accuracy and strong positioning robustness.
  • loading
  • [1]
    S G F. Newton's mechanics and its influence on the formation of modern physics[J]. Journal of the Franklin Institute, 1927, 204(3): 433–434. doi: 10.1016/S0016-0032(27)92147-4
    [2]
    朱方悦. 麦克斯韦方程组的简单概述及应用[J]. 中国新通信, 2018, 20(15): 230–231. doi: 10.3969/j.issn.1673-4866.2018.15.189

    ZHU Fangyue. Brief overview and application of Maxwell equations[J]. China New Telecommunications, 2018, 20(15): 230–231. doi: 10.3969/j.issn.1673-4866.2018.15.189
    [3]
    LU Chenguang. A generalization of Shannon’s information theory[J]. International Journal of General Systems, 1999, 28(6): 453–490. doi: 10.1080/03081079908935247
    [4]
    SPICER D F and SACKETT J N. Shot noise limits to measurement accuracy and bandwidth in electron-beam testing[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, 1986, 4(1): 213. doi: 10.1116/1.583441
    [5]
    ZHAO Fa, WANG Dong, and YE Liu. Relationship between entanglement and coherence in some two-qubit states[J]. International Journal of Theoretical Physics, 2022, 61(1): 10. doi: 10.1007/s10773-022-05014-z
    [6]
    FORTIN S and LOMBARDI O. Entanglement and indistinguishability in a quantum ontology of properties[J]. Studies in History and Philosophy of Science, 2022, 91: 234–243. doi: 10.1016/j.shpsa.2021.11.017
    [7]
    FAN Chenrui, LU Bo, FENG Xueting, et al. Efficient multi-qubit quantum data compression[J]. Quantum Engineering, 2021, 3(2): e67. doi: 10.1002/que2.67
    [8]
    LIU Kui, LI Jiaming, YANG Rongguo, et al. High-fidelity heralded quantum squeezing gate based on entanglement[J]. Optics Express, 2020, 28(16): 23628–23639. doi: 10.1364/OE.398096
    [9]
    GIOVANNETTI V, LLOYD S, and MACCONE L. Positioning and clock synchronization through entanglement[J]. Physical Review A, 2002, 65(2): 022309. doi: 10.1103/PhysRevA.65.022309
    [10]
    LUKIN I P, RYCHKOV D S, FALITS A V, et al. A phase screen model for simulating numerically the propagation of a laser beam in rain[J]. Quantum Electronics, 2009, 39(9): 863–868. doi: 10.1070/QE2009v039n09ABEH013789
    [11]
    聂敏, 任杰, 杨光, 等. PM2.5大气污染对自由空间量子通信性能的影响[J]. 物理学报, 2015, 64(15): 150301. doi: 10.7498/aps.64.150301

    NIE min, REN Jie, YANG Guang, et al. Influences of PM2.5 atmospheric pollution on the performance of free space quantum communication[J]. Acta Physica Sinica, 2015, 64(15): 150301. doi: 10.7498/aps.64.150301
    [12]
    张秀再, 徐茜, 刘邦宇. 雾对自由空间量子通信性能的影响[J]. 光学学报, 2020, 40(7): 0727001. doi: 10.3788/AOS202040.0727001

    ZHANG Xiuzai, XU Qian, and LIU Bangyu. Effect of fog on the performance of free space quantum communication[J]. Acta Optica Sinica, 2020, 40(7): 0727001. doi: 10.3788/AOS202040.0727001
    [13]
    丛爽, 吴文燊, 尚伟伟, 等. 削弱大气干扰影响的三种量子测距定位方案[J]. 中国科学技术大学学报, 2020, 50(1): 64–71. doi: 10.3969/j.issn.0253-2778.2020.01.008

    CONG Shuang, WU Wenshen, SHANG Weiwei, et al. Three quantum ranging and positioning schemes to reduce atmospheric interferences[J]. Journal of University of Science and Technology of China, 2020, 50(1): 64–71. doi: 10.3969/j.issn.0253-2778.2020.01.008
    [14]
    周政, 安雪碧, 钱泳君, 等. 基于参量下转换的量子纠缠光源仿真模型[J]. 无线电通信技术, 2020, 46(6): 652–657. doi: 10.3969/j.issn.1003-3114.2020.06.005

    ZHOU Zheng, AN Xuebi, QIAN Yongjun, et al. Simulation model of type-I quantum entangled light source based on BBO crystal[J]. Radio Communications Technology, 2020, 46(6): 652–657. doi: 10.3969/j.issn.1003-3114.2020.06.005
    [15]
    GRICE W P and WALMSLEY I A. Spectral information and distinguishability in type-II down-conversion with a broadband pump[J]. Physical Review A, 1997, 56(2): 1627–1634. doi: 10.1103/PhysRevA.56.1627
    [16]
    丛爽, 宋媛媛. 量子定位系统中符合计数与到达时间差的获取[J]. 北京航空航天大学学报, 2020, 46(10): 1834–1843. doi: 10.13700/j.bh.1001-5965.2019.0540

    CONG Shuang and SONG Yuanyuan. Coincidence counting and acquisition of the time difference of arrival in quantum positioning systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1834–1843. doi: 10.13700/j.bh.1001-5965.2019.0540
    [17]
    KWIAT P G, STEINBERG A M, and CHIAO R Y. High-visibility interference in a Bell-inequality experiment for energy and time[J]. Physical Review A, 1993, 47(4): R2472–R2475. doi: 10.1103/physreva.47.r2472
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (360) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return