Advanced Search
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
KONG Yi, JI Dingzhe, CHENG Yuhu, WANG Xuesong. HyperSpectral Image Classification Based on Spectral Attention Graph Convolutional Network[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1426-1434. doi: 10.11999/JEIT220204
Citation: KONG Yi, JI Dingzhe, CHENG Yuhu, WANG Xuesong. HyperSpectral Image Classification Based on Spectral Attention Graph Convolutional Network[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1426-1434. doi: 10.11999/JEIT220204

HyperSpectral Image Classification Based on Spectral Attention Graph Convolutional Network

doi: 10.11999/JEIT220204
Funds:  The National Natural Science Foundation of China (62006232, 61976215, 62176259), The Natural Science Foundation of Jiangsu Province (BK20200632)
  • Received Date: 2022-03-01
  • Rev Recd Date: 2022-07-31
  • Available Online: 2022-08-05
  • Publish Date: 2023-04-10
  • In recent years, graph convolutional network has been widely used in hyperspectral image classification because of its feature aggregation mechanism, which can simultaneously represent the features of a single node and neighboring nodes. However, there are many problems in HyperSpectral Images(HSI), such as band redundancy and different spectrum of the same object, which results in the inadequate reliability of the initial graph constructed by directly using the original spectral features, thus leading to the low classification accuracy of hyperspectral images. Therefore, a semi-supervised classification method for hyperspectral images based on Spectral Attention Graph Convolutional Network (SAGCN) is proposed. Firstly, the attention module is used to interact with the local and global information of the spectrum, and realize the adaptive weighting of the spectrum. Then, for the hyperspectral images after spectral weighting, a more accurate nearest neighbor matrix is constructed by using spatial-spectral similarity. Finally, effective feature aggregation of labeled and unlabeled samples is carried out by graph convolution, and the network is trained with the features of labeled samples. Experimental results on three real hyperspectral image datasets including Indian Pines, Kennedy Space Center and Botswana demonstrate the effectiveness of the proposed method.
  • loading
  • [1]
    BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6–36. doi: 10.1109/MGRS.2013.2244672
    [2]
    LANDGREBE D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 2002, 19(1): 17–28. doi: 10.1109/79.974718
    [3]
    BAZI Y and MELGANI F. Toward an optimal SVM classification system for hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3374–3385. doi: 10.1109/TGRS.2006.880628
    [4]
    FANG Leyuan, LI Shutao, KANG Xudong, et al. Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7738–7749. doi: 10.1109/TGRS.2014.2318058
    [5]
    戴晓爱, 郭守恒, 任淯, 等. 基于堆栈式稀疏自编码器的高光谱影像分类[J]. 电子科技大学学报, 2016, 45(3): 382–386. doi: 10.3969/j.issn.1001-0548.2016.02.012

    DAI Xiaoai, GUO Shouheng, REN Yu, et al. Hyperspectral remote sensing image classification using the stacked sparse autoencoder[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(3): 382–386. doi: 10.3969/j.issn.1001-0548.2016.02.012
    [6]
    CHEN Yushi, ZHAO Xing, and JIA Xiuping. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2381–2392. doi: 10.1109/JSTARS.2015.2388577
    [7]
    LI Xian, DING Mingli, and PIŽURICA A. Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2615–2629. doi: 10.1109/TGRS.2019.2952758
    [8]
    CHEN Yushi, LIN Zhouhan, ZHAO Xing, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094–2107. doi: 10.1109/JSTARS.2014.2329330
    [9]
    倪鼎, 马洪兵. 基于近邻协同的高光谱图像谱-空联合分类[J]. 自动化学报, 2015, 41(2): 273–284. doi: 10.16383/j.aas.2015.c140043

    NI Ding and MA Hongbing. Spectral-spatial classification of hyperspectral images based on neighborhood collaboration[J]. ACTA Automatica Sinica, 2015, 41(2): 273–284. doi: 10.16383/j.aas.2015.c140043
    [10]
    LI Wei, WU Guodong, ZHANG Fan, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 844–853. doi: 10.1109/TGRS.2016.2616355
    [11]
    LI Zhaokui, WANG Tianning, LI Wei, et al. Deep multilayer fusion dense network for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1258–1270. doi: 10.1109/JSTARS.2020.2982614
    [12]
    KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. The 5th International Conference on Learning Representations, Toulon, France, 2017: 1–14.
    [13]
    QIN Anyong, SHANG Zhaowei, TIAN Jinyu, et al. Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 241–245. doi: 10.1109/LGRS.2018.2869563
    [14]
    DING Yun, GUO Yuanyuan, CHONG Yanwen, et al. Global consistent graph convolutional network for hyperspectral image classification[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5501516. doi: 10.1109/TIM.2021.3056750
    [15]
    WANG Haoyu, CHENG Yuhu, CHEN C L P, et al. Semisupervised classification of hyperspectral image based on graph convolutional broad network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2995–3005. doi: 10.1109/JSTARS.2021.3062642
    [16]
    SHA Anshu, WANG Bin, WU Xiaofeng, et al. Semisupervised classification for hyperspectral images using graph attention networks[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 157–161. doi: 10.1109/LGRS.2020.2966239
    [17]
    SUN Weiwei, YANG Gang, PENG Jiangtao, et al. A multiscale spectral features graph fusion method for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5513712. doi: 10.1109/TGRS.2021.3102246
    [18]
    CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232–6251. doi: 10.1109/TGRS.2016.2584107
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (731) PDF downloads(230) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return