Citation: | ZHAO Zhenbing, JIANG Zhigang, XIONG Jing, NIE Liqiang, LÜ Xuechun. Fault Classification of Transmission Line Components Based on the Adversarial Continual Learning Model[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3757-3766. doi: 10.11999/JEIT220200 |
[1] |
于群, 李浩, 屈玉清. 基于深度学习的电网安全态势感知[J]. 科学技术与工程, 2019, 19(35): 273–278. doi: 10.3969/j.issn.1671-1815.2019.35.041
YU Qun, LI Hao, and QU Yuqing. Security situational awareness of power grid based on deep learning[J]. Science Technology and Engineering, 2019, 19(35): 273–278. doi: 10.3969/j.issn.1671-1815.2019.35.041
|
[2] |
刘权莹, 李俊娥, 倪明, 等. 电网信息物理系统态势感知: 现状与研究构想[J]. 电力系统自动化, 2019, 43(19): 9–21,51. doi: 10.7500/AEPS20181027002
LIU Quanying, LI Jun’e, NI Ming, et al. Situation awareness of grid cyber-physical system: Current status and research ideas[J]. Automation of Electric Power Systems, 2019, 43(19): 9–21,51. doi: 10.7500/AEPS20181027002
|
[3] |
张姝, 王昊天, 董骁翀, 等. 基于深度学习的输电线路螺栓检测技术[J]. 电网技术, 2021, 45(7): 2821–2828. doi: 10.13335/j.1000-3673.pst.2020.1336
ZHANG Shu, WANG Haotian, DONG Xiaochong, et al. Bolt detection technology of transmission lines based on deep learning[J]. Power System Technology, 2021, 45(7): 2821–2828. doi: 10.13335/j.1000-3673.pst.2020.1336
|
[4] |
刘思言, 王博, 高昆仑, 等. 基于R-FCN的航拍巡检图像目标检测方法[J]. 电力系统自动化, 2019, 43(13): 162–167. doi: 10.7500/AEPS20180921005
LIU Siyan, WANG Bo, GAO Kunlun, et al. Object detection method for aerial inspection image based on region-based fully convolutional network[J]. Automation of Electric Power Systems, 2019, 43(13): 162–167. doi: 10.7500/AEPS20180921005
|
[5] |
赵振兵, 李延旭, 甄珍, 等. 结合KL散度和形状约束的Faster R-CNN典型金具检测方法[J]. 高电压技术, 2020, 46(9): 3018–3026. doi: 10.13336/j.1003-6520.hve.20200507023
ZHAO Zhenbing, LI Yanxu, ZHEN Zhen, et al. Typical fittings detection method with faster R-CNN combining KL divergence and shape constraints[J]. High Voltage Engineering, 2020, 46(9): 3018–3026. doi: 10.13336/j.1003-6520.hve.20200507023
|
[6] |
赵振兵, 张薇, 戚银城, 等. 融合深度特征的输电线路金具缺陷因果分类方法[J]. 北京航空航天大学学报, 2021, 47(3): 461–468. doi: 10.13700/j.bh.1001-5965.2020.0456
ZHAO Zhenbing, ZHANG Wei, QI Yincheng, et al. Causal classification method of transmission lines fitting defect combined with deep features[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 461–468. doi: 10.13700/j.bh.1001-5965.2020.0456
|
[7] |
李雪峰, 刘海莹, 刘高华, 等. 基于深度学习的输电线路销钉缺陷检测[J]. 电网技术, 2021, 45(8): 2988–2995. doi: 10.13335/j.1000-3673.pst.2020.1028
LI Xuefeng, LIU Haiying, LIU Gaohua, et al. Transmission line pin defect detection based on deep learning[J]. Power System Technology, 2021, 45(8): 2988–2995. doi: 10.13335/j.1000-3673.pst.2020.1028
|
[8] |
缪希仁, 林志成, 江灏, 等. 基于深度卷积神经网络的输电线路防鸟刺部件识别与故障检测[J]. 电网技术, 2021, 45(1): 126–133. doi: 10.13335/j.1000-3673.pst.2019.1775
MIAO Xiren, LIN Zhicheng, JIANG Hao, et al. Fault detection of power tower anti-bird spurs based on deep convolutional neural network[J]. Power System Technology, 2021, 45(1): 126–133. doi: 10.13335/j.1000-3673.pst.2019.1775
|
[9] |
李彩林, 张青华, 陈文贺, 等. 基于深度学习的绝缘子定向识别算法[J]. 电子与信息学报, 2020, 42(4): 1033–1040. doi: 10.11999/JEIT190350
LI Cailin, ZHANG Qinghua, CHEN Wenhe, et al. Insulator orientation detection based on deep learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1033–1040. doi: 10.11999/JEIT190350
|
[10] |
DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: Defying forgetting in classification tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3366–3385. doi: 10.1109/TPAMI.2021.3057446
|
[11] |
刘志颖, 缪希仁, 陈静, 等. 电力架空线路巡检可见光图像智能处理研究综述[J]. 电网技术, 2020, 44(3): 1057–1069. doi: 10.13335/j.1000-3673.pst.2019.0349
LIU Zhiying, MIAO Xiren, CHEN Jing, et al. Review of visible image intelligent processing for transmission line inspection[J]. Power System Technology, 2020, 44(3): 1057–1069. doi: 10.13335/j.1000-3673.pst.2019.0349
|
[12] |
KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521–3526. doi: 10.1073/pnas.1611835114
|
[13] |
ZENKE F, POOLE B, and GANGULI S. Continual learning through synaptic intelligence[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 3987–3995.
|
[14] |
LI Zhizhong and HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935–2947. doi: 10.1109/TPAMI.2017.2773081
|
[15] |
CHAUDHRY A, RANZATO M, ROHRBACH M, et al. Efficient lifelong learning with A-GEM[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[16] |
LOPEZ-PAZ D and RANZATO M. Gradient episodic memory for continual learning[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6470–6479.
|
[17] |
EBRAHIMI S, MEIER F, CALANDRA R, et al. Adversarial continual learning[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 386–402.
|
[18] |
SERRÀ S, SURIS D, MIRON M, et al. Overcoming catastrophic forgetting with hard attention to the task[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 4555–4564.
|
[19] |
RUSU A A, RABINOWITZ N C, DESJARDINS G, et al. Progressive neural networks[EB/OL]. https://arxiv.org/abs/1606.04671, 2016.
|
[20] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
|