Advanced Search
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
SU Jian, QIAN Zhen, LI Bin. Digital Twin Empowered Task Offloading for RIS-Assisted Edge Computing Networks[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2416-2424. doi: 10.11999/JEIT220180
Citation: SU Jian, QIAN Zhen, LI Bin. Digital Twin Empowered Task Offloading for RIS-Assisted Edge Computing Networks[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2416-2424. doi: 10.11999/JEIT220180

Digital Twin Empowered Task Offloading for RIS-Assisted Edge Computing Networks

doi: 10.11999/JEIT220180
Funds:  The National Natural Science Foundation of China (62101277), The National Natural Science Foundation of Jiangsu Province (BK20200822)
  • Received Date: 2022-02-25
  • Rev Recd Date: 2022-05-24
  • Available Online: 2022-05-30
  • Publish Date: 2022-07-25
  • In order to meet the high computing demands caused by emerging compute-intensive applications in Mobile Edge Computing (MEC), this paper proposes a Digital Twin (DT)-empowered task offloading scheme where Reconfigurable Intelligent Surface (RIS) is used to enhance the communication links and extend the coverage. Firstly, the joint optimization of user offloading strategy, RIS phase-shift vector, beamforming vector, transmit power of users and computation capacity allocation are investigated with the aim of minimizing the total energy consumption of users and resource devices under the constraints of communication and computing resources. Then, the formulated non-convex combinational optimization problem is decomposed into three sub-problems, including RIS phase-shift design, binary optimization of transmit power, and computing resource allocation. In addition, the Double Deep Q Network (DDQN) approach is invoked to determine the offloading decisions and an alternating iteration optimization algorithm is designed to achieve the optimal solution. Simulation results show that the DDQN-based algorithm is able to train quickly and reduce effectively the total energy consumption of the system.
  • loading
  • [1]
    ZHANG Jiayi, LIU Heng, WU Qingqing, et al. RIS-aided next-generation high-speed train communications: Challenges, solutions, and future directions[J]. IEEE Wireless Communications, 2021, 28(6): 145–151. doi: 10.1109/MWC.001.2100170
    [2]
    徐勇军, 高正念, 王茜竹, 等. 基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法[J]. 电子与信息学报, 待发表.

    XU Yongjun, GAO Zhengnian, WANG Qianzhu, et al. Robust energy efficiency maximization algorithm for intelligent reflecting surface-aided wireless powered-communication networks[J]. Journal of Electronics & Information Technology, To be published.
    [3]
    MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    [4]
    XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
    [5]
    XU Yongjun, GU Bowen, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200–6205. doi: 10.1109/TVT.2021.3077094
    [6]
    CHEN Yuanbin, WANG Ying, ZHANG Jiayi, et al. QoS-driven spectrum sharing for reconfigurable intelligent surfaces (RISs) aided vehicular networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5969–5985. doi: 10.1109/TWC.2021.3071332
    [7]
    SHI Enyu, ZHANG Jiayi, CHEN Shuaifei, et al. Wireless energy transfer in RIS-aided cell-free massive MIMO systems: Opportunities and challenges[J]. IEEE Communications Magazine, 2022, 60(3): 26–32. doi: 10.1109/MCOM.001.2100671
    [8]
    ZHANG Yan, ZHANG Jiayi, DI RENZO M, et al. Reconfigurable intelligent surfaces with outdated channel state Information: Centralized vs. distributed deployments[J]. IEEE Transactions on Communications, 2022, 70(4): 2742–2756. doi: 10.1109/TCOMM.2022.3146344
    [9]
    JIN Yu, ZHANG Jiayi, HUANG Chongwen, et al. Multiple residual dense networks for reconfigurable intelligent surfaces cascaded channel estimation[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2134–2139. doi: 10.1109/TVT.2021.3132305
    [10]
    JIN Yu, ZHANG Jiayi, ZHANG Xiaodan, et al. Channel estimation for semi-passive reconfigurable intelligent surfaces with enhanced deep residual networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11083–11088. doi: 10.1109/TVT.2021.3109937
    [11]
    YANG Zhaohui, XU Wei, HUANG Chongwen, et al. Beamforming design for multiuser transmission through reconfigurable intelligent surface[J]. IEEE Transactions on Communications, 2021, 69(1): 589–601. doi: 10.1109/TCOMM.2020.3028309
    [12]
    HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [13]
    BAI Tong, PAN Cunhua, DENG Yansha, et al. Latency minimization for intelligent reflecting surface aided mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2666–2682. doi: 10.1109/JSAC.2020.3007035
    [14]
    CHU Zheng, XIAO Pei, SHOJAFAR M, et al. Intelligent reflecting surface assisted mobile edge computing for internet of things[J]. IEEE Wireless Communications Letters, 2021, 10(3): 619–623. doi: 10.1109/LWC.2020.3040607
    [15]
    WANG Qun, ZHOU Fuhui, HU Han, et al. Energy-efficient design for IRS-assisted MEC networks with NOMA[C]. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 2021: 1–6.
    [16]
    LI Zhiyang, CHEN Ming, YANG Zhaohui, et al. Energy efficient reconfigurable intelligent surface enabled mobile edge computing networks with NOMA[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 427–440. doi: 10.1109/TCCN.2021.3068750
    [17]
    HUANG Shanfeng, WANG Shuai, WANG Rui, et al. Reconfigurable intelligent surface assisted mobile edge computing with heterogeneous learning tasks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 369–382. doi: 10.1109/TCCN.2021.3056707
    [18]
    WU Yiwen, ZHANG Ke, and ZHANG Yan. Digital twin networks: A survey[J]. IEEE Internet of Things Journal, 2021, 8(18): 13789–13804. doi: 10.1109/JIOT.2021.3079510
    [19]
    DAI Yueyue, ZHANG Ke, MAHARJAN S, et al. Deep reinforcement learning for stochastic computation offloading in digital twin networks[J]. IEEE Transactions on Industrial Informatics, 2020, 17(7): 4968–4977. doi: 10.1109/TII.2020.3016320
    [20]
    LU Yunlong, HUANG Xiaohong, ZHANG Ke, et al. Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks[J]. IEEE Transactions on Industrial Informatics, 2020, 17(7): 5098–5107. doi: 10.1109/TII.2020.3017668
    [21]
    SUN Wen, ZHANG Haibin, WANG Rong, et al. Reducing offloading latency for digital twin edge networks in 6G[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12240–12251. doi: 10.1109/TVT.2020.3018817
    [22]
    LIU Tong, TANG Lun, WANG Weili, et al. Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network[J]. IEEE Internet of Things Journal, 2022, 9(2): 1427–1444. doi: 10.1109/JIOT.2021.3086961
    [23]
    WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
    [24]
    HU Xiaoyan, MASOUROS C, WONG K K, et al. Reconfigurable intelligent surface aided mobile edge computing: From optimization-based to location-only learning-based solutions[J]. IEEE Transactions on Communications, 2021, 69(6): 3709–3725. doi: 10.1109/TCOMM.2021.3066495
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (1100) PDF downloads(229) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return