Advanced Search
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
FENG Man, HU Zhongying, Bateer. Energy Efficiency Optimization Algorithm of Cooperative Non-Orthogonal Multiple Access joint Simultaneous Wireless Information and Power Transfer Based on Successive Convex Approximation[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1147-1153. doi: 10.11999/JEIT220170
Citation: FENG Man, HU Zhongying, Bateer. Energy Efficiency Optimization Algorithm of Cooperative Non-Orthogonal Multiple Access joint Simultaneous Wireless Information and Power Transfer Based on Successive Convex Approximation[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1147-1153. doi: 10.11999/JEIT220170

Energy Efficiency Optimization Algorithm of Cooperative Non-Orthogonal Multiple Access joint Simultaneous Wireless Information and Power Transfer Based on Successive Convex Approximation

doi: 10.11999/JEIT220170
  • Received Date: 2022-02-22
  • Rev Recd Date: 2020-10-30
  • Available Online: 2022-11-01
  • Publish Date: 2023-04-10
  • In a traditional Non-Orthogonal Multiple Access (NOMA) system, more power is usually allocated to edge users to ensure its communication quality. However, the fairness of the system comes at the expense of system capacity. Introducing collaborative communication into the NOMA system, the central user also needs to assume the role of relay in the collaboration phase. This method will inevitably bring a certain burden to the central user. In order to balance system capacity and fairness, a new resource allocation scheme based on cooperative communication and Simultaneous Wireless Information and Power Transfer (SWIPT) is proposed. Energy harvesting equipment is used for energy harvesting, and maximizes the energy efficiency of the system by solving the target problem through Successive Convex Approximation (SCA). Compared with the traditional NOMA and Cooperative NOMA, the energy efficiency of the CNOMA-SWIPT system is greatly improved. When the maximum transmit power of the base station is 30 dBm, CNOMA-SWIPT can achieve a gain of 60.8% compared to the NOMA system and can achieve a gain of about 11.5% higher than that of the CNOMA system, which is more in line with the development concept of green communication.
  • loading
  • [1]
    DING Zhiguo, YANG Zheng, FAN Pingzhi, et al. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users[J]. IEEE Signal Processing Letters, 2014, 21(12): 1501–1505. doi: 10.1109/LSP.2014.2343971
    [2]
    HIGUCHI K and KISHIYAMA Y. Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink[C]. 2013 IEEE 78th Vehicular Technology Conference, Las Vegas, USA, 2013: 1–5.
    [3]
    SHAHAB M B and SHIN S Y. User pairing and power allocation for non-orthogonal multiple access: Capacity maximization under data reliability constraints[J]. Physical Communication, 2018, 30: 132–144. doi: 10.1016/j.phycom.2018.05.010
    [4]
    SHAHAB M B, KADER F, and SHIN S Y. On the power allocation of non-orthogonal multiple access for 5G wireless networks[C]. 2016 International Conference on Open Source Systems & Technologies (ICOSST), Lahore, Pakistan, 2016: 89–94.
    [5]
    KIMY B, LIM S, KIM H, et al. Non-orthogonal multiple access in a downlink multiuser beamforming system[C]. MILCOM 2013 - 2013 IEEE Military Communications Conference, San Diego, USA, 2014: 1278–1283.
    [6]
    DING Zhiguo, PENG Mugen, and POOR H V. Cooperative non-orthogonal multiple access in 5G systems[J]. IEEE Communications Letters, 2015, 19(8): 1462–1465. doi: 10.1109/LCOMM.2015.2441064
    [7]
    KRIKIDIS I, TIMOTHEOU S, NIKOLAOU S, et al. Simultaneous wireless information and power transfer in modern communication systems[J]. IEEE Communications Magazine, 2014, 52(11): 104–110. doi: 10.1109/MCOM.2014.6957150
    [8]
    GUO Shengjie, ZHOU Xiangwei, and ZHOU Xiangyun. Energy-efficient resource allocation in SWIPT cooperative wireless networks[J]. IEEE Systems Journal, 2020, 14(3): 4131–4142. doi: 10.1109/JSYST.2019.2961001
    [9]
    LIU Yuanwei, DING Zhiguo, ELKASHLAN M, et al. Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4): 938–953. doi: 10.1109/JSAC.2016.2549378
    [10]
    ZHANG Zhenwei, QU Hua, ZHAO Jihong, et al. Energy efficient transmission design of cooperative NOMA with SWIPT network[C]. 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2019: 566–572.
    [11]
    RAUNIYAR A, ENGELSTAD P E, and ØSTERBØ O N. On the performance of bidirectional NOMA-SWIPT enabled IoT relay networks[J]. IEEE Sensors Journal, 2021, 21(2): 2299–2315. doi: 10.1109/JSEN.2020.3018905
    [12]
    LEE C, JANG G, and CHO S. Energy-efficient adaptive directional queue-stable stochastic scheduling for SWIPT in NOMA[C]. 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 2020: 76–79.
    [13]
    PARIHAR A S, SWAMI P, BHATIA V, et al. Performance analysis of SWIPT enabled cooperative-NOMA in heterogeneous networks using carrier sensing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10646–10656. doi: 10.1109/TVT.2021.3110806
    [14]
    TANG Jie, LUO Jingci, LIU Mingqian, et al. Energy efficiency optimization for NOMA with SWIPT[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 452–466. doi: 10.1109/JSTSP.2019.2898114
    [15]
    NGUYEN V D and SHIN O S. An efficient design for NOMA-assisted MISO-SWIPT systems with AC computing[J]. IEEE Access, 2019, 7: 97094–97105. doi: 10.1109/ACCESS.2019.2928877
    [16]
    BUDHIRAJA I, KUMAR N, TYAGI S, et al. An energy-efficient resource allocation scheme for SWIPT-NOMA based femtocells users with imperfect CSI[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7790–7805. doi: 10.1109/TVT.2020.2991466
    [17]
    YUAN Yi, XU Yanqing, YANG Zheng, et al. Energy efficiency optimization in full-duplex user-aided cooperative SWIPT NOMA systems[J]. IEEE Transactions on Communications, 2019, 67(8): 5753–5767. doi: 10.1109/TCOMM.2019.2914386
    [18]
    RAZAVIYAYN M. Successive convex approximation: Analysis and applications[D]. [Ph. D. dissertation], University of Minnesota, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (635) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return