Citation: | LIN Li, ZHANG Xiaoying, SHEN Wei, WANG Wanxiang. FastProtector: An Efficient Federated Learning Method Supporting Gradient Privacy Protection[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1356-1365. doi: 10.11999/JEIT220161 |
[1] |
JEON J, KIM J, KIM J, et al. Privacy-preserving deep learning computation for geo-distributed medical big-data platforms[C]. 2019 49th IEEE/IFIP International Conference on Dependable Systems and Networks-Supplemental Volume, Portland, USA, 2019: 3–4.
|
[2] |
LIU Yang, MA Zhuo, LIU Ximeng, et al. Privacy-preserving object detection for medical images with faster R-CNN[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 69–84. doi: 10.1109/TIFS.2019.2946476
|
[3] |
VIZITIU A, NIŢĂ C I, PUIU A, et al. Towards privacy-preserving deep learning based medical imaging applications[C]. 2019 IEEE International Symposium on Medical Measurements and Applications, Istanbul, Turkey, 2019: 1–6.
|
[4] |
Intersoft consulting. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data and repealing Directive 95/46/EC (General Data Protection Regulation) [EB/OL]. https://gdpr-info.eu, 2020.
|
[5] |
DLA Piper. Data protection laws of the world: Full handbook[EB/OL]. https://www.dlapiperdataprotection.com, 2021.
|
[6] |
中华人民共和国网络安全法(全文)[EB/OL]. http://www.zgyq.gov.cn/zwzxrdzt/xfzl/202208/t20220819_76128304.html, 2022.
Cybersecurity law of the People's Republic of China[EB/OL]. http://www.zgyq.gov.cn/zwzxrdzt/xfzl/202208/t20220819_76128304.html, 2022.
|
[7] |
中华人民共和国数据安全法[EB/OL]. http://www.npc.gov.cn/npc/c30834/202106/7c9af12f51334a73b56d7938f99a788a.shtml, 2021.
Data security law of the People's Republic of China[EB/OL]. http://www.npc.gov.cn/npc/c30834/202106/7c9af12f51334a73b56d7938f99a788a.shtml, 2021.
|
[8] |
中华人民共和国个人信息保护法[EB/OL]. http://www.npc.gov.cn/npc/c30834/202108/a8c4e3672c74491a80b53a172bb753fe.shtml, 2021.
Personal information protection law of the People's Republic of China[EB/OL]. http://www.npc.gov.cn/npc/c30834/202108/a8c4e3672c74491a80b53a172bb753fe.shtml, 2021.
|
[9] |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Federated learning of deep networks using model averaging[EB/OL]. https://arxiv.org/abs/1602.05629v1, 2016.
|
[10] |
ZHU Ligeng, LIU Zhijian, and HAN Song. Deep leakage from gradients[EB/OL]. https://arxiv.org/abs/1906.08935, 2019.
|
[11] |
MA Chuan, LI Jun, DING Ming, et al. On safeguarding privacy and security in the framework of federated learning[EB/OL]. https://arxiv.org/abs/1909.06512, 2019.
|
[12] |
ZHOU Chunyi, FU Anmin, YU Shui, et al. Privacy-preserving federated learning in fog computing[J]. IEEE Internet of Things Journal, 2020, 7(11): 10782–10793. doi: 10.1109/JIOT.2020.2987958
|
[13] |
PHONG L T, AONO Y, HAYASHI T, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1333–1345. doi: 10.1109/TIFS.2017.2787987
|
[14] |
ZHANG Xianglong, FU Anmin, WANG Huaqun, et al. A privacy-preserving and verifiable federated learning scheme[C]. 2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6.
|
[15] |
LOHANA A, RUPANI A, RAI S, et al. Efficient privacy-aware federated learning by elimination of downstream redundancy[J]. IEEE Design & Test, 2022, 39(3): 73–81. doi: 10.1109/MDAT.2021.3063373
|
[16] |
MENG Dan, LI Hongyu, ZHU Fan, et al. FedMONN: Meta operation neural network for secure federated aggregation[C]. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Yanuca Island, Fiji, 2020: 579–584.
|
[17] |
董业, 侯炜, 陈小军, 等. 基于秘密分享和梯度选择的高效安全联邦学习[J]. 计算机研究与发展, 2020, 57(10): 2241–2250. doi: 10.7544/issn1000-1239.2020.20200463
DONG Ye, HOU Wei, CHEN Xiaojun, et al. Efficient and secure federated learning based on secret sharing and gradients selection[J]. Journal of Computer Research and Development, 2020, 57(10): 2241–2250. doi: 10.7544/issn1000-1239.2020.20200463
|
[18] |
FANG Minghong, CAO Xiaoyu, JIA Jinyuan, et al. Local model poisoning attacks to Byzantine-Robust federated learning[EB/OL]. https://arxiv.org/abs/1911.11815, 2021.
|
[19] |
夏家骏, 鲁颖, 张子扬, 等. 基于秘密共享与同态加密的纵向联邦学习方案研究[J]. 信息通信技术与政策, 2021, 47(6): 19–26. doi: 10.12267/j.issn.2096-5931.2021.06.003
XIA Jiajun, LU Ying, ZHANG Ziyang, et al. Research on vertical federated learning based on secret sharing and homomorphic encryption[J]. Information and Communications Technology and Policy, 2021, 47(6): 19–26. doi: 10.12267/j.issn.2096-5931.2021.06.003
|
[20] |
HAO Meng, LI Hongwei, XU Guowen, et al. Towards efficient and privacy-preserving federated deep learning[C]. 2019 IEEE International Conference on Communications, Shanghai, China, 2019: 1–6.
|
[21] |
XIANG Liyao, YANG Jingbo, and LI Baochun. Differentially-private deep learning from an optimization perspective[C]. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, Paris, France, 2019: 559–567.
|
[22] |
BERNSTEIN J, ZHAO J W, AZIZZADENESHELI K, et al. SignSGD with majority vote is communication efficient and fault tolerant[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019: 1–20.
|