Advanced Search
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LIN Li, ZHANG Xiaoying, SHEN Wei, WANG Wanxiang. FastProtector: An Efficient Federated Learning Method Supporting Gradient Privacy Protection[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1356-1365. doi: 10.11999/JEIT220161
Citation: LIN Li, ZHANG Xiaoying, SHEN Wei, WANG Wanxiang. FastProtector: An Efficient Federated Learning Method Supporting Gradient Privacy Protection[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1356-1365. doi: 10.11999/JEIT220161

FastProtector: An Efficient Federated Learning Method Supporting Gradient Privacy Protection

doi: 10.11999/JEIT220161
Funds:  The National Natural Science Foundation of China (61502017), The Scientific Research Common Program of Beijing Municipal Commission of Education (KM201710005024)
  • Received Date: 2022-02-22
  • Rev Recd Date: 2022-11-16
  • Available Online: 2022-11-21
  • Publish Date: 2023-04-10
  • Federated learning has the problem of privacy leakage from the gradient. The existing gradient protection schemes based on homomorphic encryption incur a large time cost and the risk of gradient leakage caused by potential collusion between participants and aggregation server. A new federated learning method called FastProtector is proposed, where the idea of SignSGD is introduced when homomorphic encryption is used to protect participant gradients. Exploiting the feature that the majority of positive and negative gradients determine the aggregation result to make the model convergent, the gradient is quantified and the gradient updating mechanism is improved, which can reduce the overhead of gradient encryption. Meanwhile, an additive secret sharing scheme is proposed to protect the gradient ciphertext against collusion attacks between malicious aggregation servers and participants. Experiments on MNIST and CIFAR-10 dataset show that the proposed method can reduce the total encryption and decryption time by about 80% while ensuring high model accuracy.
  • loading
  • [1]
    JEON J, KIM J, KIM J, et al. Privacy-preserving deep learning computation for geo-distributed medical big-data platforms[C]. 2019 49th IEEE/IFIP International Conference on Dependable Systems and Networks-Supplemental Volume, Portland, USA, 2019: 3–4.
    [2]
    LIU Yang, MA Zhuo, LIU Ximeng, et al. Privacy-preserving object detection for medical images with faster R-CNN[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 69–84. doi: 10.1109/TIFS.2019.2946476
    [3]
    VIZITIU A, NIŢĂ C I, PUIU A, et al. Towards privacy-preserving deep learning based medical imaging applications[C]. 2019 IEEE International Symposium on Medical Measurements and Applications, Istanbul, Turkey, 2019: 1–6.
    [4]
    Intersoft consulting. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data and repealing Directive 95/46/EC (General Data Protection Regulation) [EB/OL]. https://gdpr-info.eu, 2020.
    [5]
    DLA Piper. Data protection laws of the world: Full handbook[EB/OL]. https://www.dlapiperdataprotection.com, 2021.
    [6]
    中华人民共和国网络安全法(全文)[EB/OL]. http://www.zgyq.gov.cn/zwzxrdzt/xfzl/202208/t20220819_76128304.html, 2022.

    Cybersecurity law of the People's Republic of China[EB/OL]. http://www.zgyq.gov.cn/zwzxrdzt/xfzl/202208/t20220819_76128304.html, 2022.
    [7]
    中华人民共和国数据安全法[EB/OL]. http://www.npc.gov.cn/npc/c30834/202106/7c9af12f51334a73b56d7938f99a788a.shtml, 2021.

    Data security law of the People's Republic of China[EB/OL]. http://www.npc.gov.cn/npc/c30834/202106/7c9af12f51334a73b56d7938f99a788a.shtml, 2021.
    [8]
    中华人民共和国个人信息保护法[EB/OL]. http://www.npc.gov.cn/npc/c30834/202108/a8c4e3672c74491a80b53a172bb753fe.shtml, 2021.

    Personal information protection law of the People's Republic of China[EB/OL]. http://www.npc.gov.cn/npc/c30834/202108/a8c4e3672c74491a80b53a172bb753fe.shtml, 2021.
    [9]
    MCMAHAN H B, MOORE E, RAMAGE D, et al. Federated learning of deep networks using model averaging[EB/OL]. https://arxiv.org/abs/1602.05629v1, 2016.
    [10]
    ZHU Ligeng, LIU Zhijian, and HAN Song. Deep leakage from gradients[EB/OL]. https://arxiv.org/abs/1906.08935, 2019.
    [11]
    MA Chuan, LI Jun, DING Ming, et al. On safeguarding privacy and security in the framework of federated learning[EB/OL]. https://arxiv.org/abs/1909.06512, 2019.
    [12]
    ZHOU Chunyi, FU Anmin, YU Shui, et al. Privacy-preserving federated learning in fog computing[J]. IEEE Internet of Things Journal, 2020, 7(11): 10782–10793. doi: 10.1109/JIOT.2020.2987958
    [13]
    PHONG L T, AONO Y, HAYASHI T, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1333–1345. doi: 10.1109/TIFS.2017.2787987
    [14]
    ZHANG Xianglong, FU Anmin, WANG Huaqun, et al. A privacy-preserving and verifiable federated learning scheme[C]. 2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6.
    [15]
    LOHANA A, RUPANI A, RAI S, et al. Efficient privacy-aware federated learning by elimination of downstream redundancy[J]. IEEE Design & Test, 2022, 39(3): 73–81. doi: 10.1109/MDAT.2021.3063373
    [16]
    MENG Dan, LI Hongyu, ZHU Fan, et al. FedMONN: Meta operation neural network for secure federated aggregation[C]. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Yanuca Island, Fiji, 2020: 579–584.
    [17]
    董业, 侯炜, 陈小军, 等. 基于秘密分享和梯度选择的高效安全联邦学习[J]. 计算机研究与发展, 2020, 57(10): 2241–2250. doi: 10.7544/issn1000-1239.2020.20200463

    DONG Ye, HOU Wei, CHEN Xiaojun, et al. Efficient and secure federated learning based on secret sharing and gradients selection[J]. Journal of Computer Research and Development, 2020, 57(10): 2241–2250. doi: 10.7544/issn1000-1239.2020.20200463
    [18]
    FANG Minghong, CAO Xiaoyu, JIA Jinyuan, et al. Local model poisoning attacks to Byzantine-Robust federated learning[EB/OL]. https://arxiv.org/abs/1911.11815, 2021.
    [19]
    夏家骏, 鲁颖, 张子扬, 等. 基于秘密共享与同态加密的纵向联邦学习方案研究[J]. 信息通信技术与政策, 2021, 47(6): 19–26. doi: 10.12267/j.issn.2096-5931.2021.06.003

    XIA Jiajun, LU Ying, ZHANG Ziyang, et al. Research on vertical federated learning based on secret sharing and homomorphic encryption[J]. Information and Communications Technology and Policy, 2021, 47(6): 19–26. doi: 10.12267/j.issn.2096-5931.2021.06.003
    [20]
    HAO Meng, LI Hongwei, XU Guowen, et al. Towards efficient and privacy-preserving federated deep learning[C]. 2019 IEEE International Conference on Communications, Shanghai, China, 2019: 1–6.
    [21]
    XIANG Liyao, YANG Jingbo, and LI Baochun. Differentially-private deep learning from an optimization perspective[C]. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, Paris, France, 2019: 559–567.
    [22]
    BERNSTEIN J, ZHAO J W, AZIZZADENESHELI K, et al. SignSGD with majority vote is communication efficient and fault tolerant[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019: 1–20.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (888) PDF downloads(168) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return