Advanced Search
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
MEI Tiancan, QIN Yusheng, YANG Hong, GAO Zhi, LI Haoran. Multilevel Semantic Maps Based on Visual Simultaneous Localization and Mapping in Dynamic Scenarios[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1737-1746. doi: 10.11999/JEIT220153
Citation: MEI Tiancan, QIN Yusheng, YANG Hong, GAO Zhi, LI Haoran. Multilevel Semantic Maps Based on Visual Simultaneous Localization and Mapping in Dynamic Scenarios[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1737-1746. doi: 10.11999/JEIT220153

Multilevel Semantic Maps Based on Visual Simultaneous Localization and Mapping in Dynamic Scenarios

doi: 10.11999/JEIT220153
Funds:  The Natural Science Foundation of Hubei Province (2021CFA088)
  • Received Date: 2022-02-18
  • Rev Recd Date: 2022-06-18
  • Available Online: 2022-06-25
  • Publish Date: 2023-05-10
  • To cope with the moving objects in dynamic environments and make the robots truly understand the surroundings, a visual Simultaneous Localization And Mapping (SLAM) system is proposed to estimate simultaneously trajectory and object-level dense 3D semantic maps in dynamic environments. Object detection and optical flow results are leveraged to identify those actually moving objects. To improve semantic mapping accuracy, an unsupervised algorithm is employed to segment 3D point cloud into meaningful clusters with semantic cues. The semantic maps are further used to improve object detection model, by fine-tuning with hard examples coming from semantic maps in challenging conditions. Extensive qualitative and quantitative experiments which compare the proposed method to comparable state-of-the-art approaches show that the proposed method achieves improved accuracy and robustness in dynamic scenes.
  • loading
  • [1]
    ROSINOL A, ABATE M, CHANG Yun, et al. Kimera: An open-source library for real-time metric-semantic localization and mapping[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020: 1689–1696.
    [2]
    QIN Tong, LI Peiliang, and SHEN Shaojie. VINS-mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004–1020. doi: 10.1109/TRO.2018.2853729
    [3]
    CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual–inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874–1890. doi: 10.1109/TRO.2021.3075644
    [4]
    MUR-ARTAL R and TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255–1262. doi: 10.1109/TRO.2017.2705103
    [5]
    LONG Ran, RAUCH C, ZHANG Tianwei, et al. RigidFusion: Robot localisation and mapping in environments with large dynamic rigid objects[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3703–3710. doi: 10.1109/LRA.2021.3066375
    [6]
    JI Tete, WANG Chen, and XIE Lihua. Towards real-time semantic RGB-D SLAM in dynamic environments[C]. 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021: 11175–11181.
    [7]
    ZHANG Tianwei, ZHANG Huayan, LI Yang, et al. FlowFusion: Dynamic dense RGB-D SLAM based on optical flow[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020: 7322–7328.
    [8]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [9]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [10]
    HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. The IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
    [11]
    BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
    [12]
    RUNZ M, BUFFIER M, and AGAPITO L. MaskFusion: Real-time recognition, tracking and reconstruction of multiple moving objects[C]. 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Munich, Germany, 2018: 10–20.
    [13]
    BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076–4083. doi: 10.1109/LRA.2018.2860039
    [14]
    YU Chao, LIU Zuxin, LIU Xinjun, et al. DS-SLAM: A semantic visual SLAM towards dynamic environments[C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: 1168–1174.
    [15]
    LIU Yubao and MIURA J. RDS-SLAM: Real-time dynamic SLAM using semantic segmentation methods[J]. IEEE Access, 2021, 9: 23772–23785. doi: 10.1109/ACCESS.2021.3050617
    [16]
    MCCORMAC J, HANDA A, DAVISON A, et al. SemanticFusion: Dense 3D semantic mapping with convolutional neural networks[C]. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017: 4628–4635.
    [17]
    FAN Yingchun, ZHANG Qichi, LIU Shaofeng, et al. Semantic SLAM with more accurate point cloud map in dynamic environments[J]. IEEE Access, 2020, 8: 112237–112252. doi: 10.1109/ACCESS.2020.3003160
    [18]
    CHENG Jiyu, WANG Chaoqun, MAI Xiaochun, et al. Improving dense mapping for mobile robots in dynamic environments based on semantic information[J]. IEEE Sensors Journal, 2021, 21(10): 11740–11747. doi: 10.1109/JSEN.2020.3023696
    [19]
    REDMON J and FARHADI A. YOLOv3: An incremental improvement[C]. Computer Vision and Pattern Recognition, Berlin, Heidelberg, Germany, 2018: 1804–2767.
    [20]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755.
    [21]
    PHAM T T, EICH M, REID I, et al. Geometrically consistent plane extraction for dense indoor 3D maps segmentation[C]. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016: 4199–4204.
    [22]
    ZHONG Fangwei, WANG Sheng, ZHANG Ziqi, et al. Detect-SLAM: Making object detection and SLAM mutually beneficial[C]. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, USA, 2018: 1001–1010.
    [23]
    STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012: 573–580.
    [24]
    HANDA A, WHELAN T, MCDONALD J, et al. A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM[C]. 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014: 1524–1531.
    [25]
    KIM D H and KIM J H. Effective background model-based RGB-D dense visual odometry in a dynamic environment[J]. IEEE Transactions on Robotics, 2016, 32(6): 1565–1573. doi: 10.1109/TRO.2016.2609395
    [26]
    LI Shile and LEE D. RGB-D SLAM in dynamic environments using static point weighting[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 2263–2270. doi: 10.1109/LRA.2017.2724759
    [27]
    DU Zhengjun, HUANG Shisheng, MU Taijiang, et al. Accurate dynamic SLAM using CRF-based long-term consistency[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(4): 1745–1757. doi: 10.1109/TVCG.2020.3028218
    [28]
    WHELAN T, SALAS-MORENO R F, GLOCKER B, et al. ElasticFusion: Real-time dense SLAM and light source estimation[J]. The International Journal of Robotics Research, 2016, 35(14): 1697–1716. doi: 10.1177/0278364916669237
    [29]
    SCONA R, JAIMEZ M, PETILLOT Y R, et al. StaticFusion: Background reconstruction for dense RGB-D SLAM in dynamic environments[C]. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 2018: 3849–3856.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (750) PDF downloads(166) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return