LUO Yan, WANG Cong, YE Wenling. An Interpretable Prediction Model for Acute Kidney Injury Based on XGBoost and SHAP[J]. Journal of Electronics & Information Technology, 2022, 44(1): 27-38. doi: 10.11999/JEIT210931
Citation:
TAO Qianwen, HU Zhaozheng, WAN Jinjie, HU Huahua, ZHANG Ming. Intelligent Vehicle Localization Based on Polarized LiDAR Representation and Siamese Network[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1163-1172. doi: 10.11999/JEIT220140
LUO Yan, WANG Cong, YE Wenling. An Interpretable Prediction Model for Acute Kidney Injury Based on XGBoost and SHAP[J]. Journal of Electronics & Information Technology, 2022, 44(1): 27-38. doi: 10.11999/JEIT210931
Citation:
TAO Qianwen, HU Zhaozheng, WAN Jinjie, HU Huahua, ZHANG Ming. Intelligent Vehicle Localization Based on Polarized LiDAR Representation and Siamese Network[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1163-1172. doi: 10.11999/JEIT220140
Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China
2.
School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
3.
Chongqing Research Institute of Wuhan University of Technology, Chongqing 401120, China
Funds:
The Fundations of Wuhan Science and Technology Bureau (2020010601012165, 2020010602011973), The Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0978), The National Key Research and Development Program of China (2021YFB2501100)
Intelligent vehicle localization based on 3D Light Detection And Ranging (LiDAR) is still a challenging task in map storage and the efficiency and accuracy of map matching. A lightweight node-level polarized LiDAR map is constructed by a series of nodes with a 2D polarized LiDAR image, a polarized LiDAR fingerprint, and sensor pose, while the polarized LiDAR image encodes a 3D cloud using a multi-channel image format, and the fingerprint is extracted and trained using Siamese network. An intelligent vehicle localization method is also proposed by matching with the polarized LiDAR map. Firstly, Siamese network is used to model the similarity of the query and map fingerprints for fast and coarse map matching. Then a Second-Order Hidden Markov Model (HMM2)-based map sequence matching method is used to find the nearest map node. Finally, the vehicle is readily localized using 3D registration. The proposed method is tested using the actual field data and the public KITTI database. The results indicate that the proposed method can achieve map matching accuracy up to 96% and 30cm localization accuracy with robustness in different types of LiDAR sensors and different environments.
疾病的早期预测可以在支持医疗卫生专业人员方面发挥重要作用,据统计,11%的医院死亡是由于未能及时识别和治疗病情恶化所致[28]。近5年来,ML方法在准确、及时预测AKI高危患者方面发挥了重要作用。例如,Flechet等人[29]开发并验证了随机森林预测模型,成功预测了成年ICU患者的AKI,受试者工作特征曲线下面积(Area Under the receiver operating characteristics Curve, AUC)达到0.84。
如前所述,大多数模型的AUC表现一般[30,32-35],而一些研究集中于特定的患者群体,如心脏手术患者[31],或研究样本量小[37],从而限制了这些模型的使用。此外,从表1可以看出,目前大多数研究中使用的特征向量非常繁琐,收集和计算也很复杂。这些研究大多缺乏模型可解释性,只有有限的解释提供简单的特征重要性结果。相比之下,本文在前期研究的基础上,使用公开可访问的包含超过46000名患者的去识别健康数据的重症监护医学信息数据库MIMIC(Medical Information Mart for Intensive Care)III进行数据分析和模型开发[38],最后基于XGBoost算法构建了重症监护病房患者的AKI早期预测模型,并比较了XGBoost与其他4种流行的机器学习技术的性能。模型中仅使用常见的生命体征和实验室检测指标,通过有效的数据预处理和XGBoost模型参数调整,取得了良好的AKI早期风险预测性能。然后,利用SHAP 估计的Shapley值从全局和局部两个角度对预测模型进行解释。解释结果不依赖所使用的预测模型,这保证了结果的可靠性并为解决临床问题提供更多的证据支撑。这些成为这项工作的主要贡献。
XIAO Zhu, CHEN Yanxun, ALAZAB M, et al. Trajectory data acquisition via private car positioning based on tightly-coupled GPS/OBD integration in urban environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9680–9691. doi: 10.1109/TITS.2021.3105550
GUO Xiansheng, ANSARI N, HU Fangzi, et al. A survey on fusion-based indoor positioning[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 566–594. doi: 10.1109/COMST.2019.2951036
LIU Guozhong and HU Zhaozheng. Fast loop closure detection based on holistic features from SURF and ORB[J]. Robot, 2017, 39(1): 36–45. doi: 10.13973/j.cnki.robot.2017.0036
LI Yicheng, HU Zhaozheng, WANG Xianglong, et al. Construction of a visual map based on road scenarios for intelligent vehicle localization[J]. China Journal of Highway and Transport, 2018, 31(11): 138–146,213. doi: 10.3969/j.issn.1001-7372.2018.11.015
YAO Meng, JIA Kebin, and SIU Wanchi. Learning-based localization with monocular camera for light-rail system[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2127–2134. doi: 10.11999/JEIT171017
[7]
SHAN Tixiao and ENGLOT B. LeGO-LOAM: Lightweight and ground-optimized LiDAR odometry and mapping on variable terrain[C]. Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: 4758–4765.
[8]
KOIDE K, MIURA J, and MENEGATTI E. A portable three-dimensional LiDAR-based system for long-term and wide-area people behavior measurement[J]. International Journal of Advanced Robotic Systems, 2019, 16(2): 72988141984153. doi: 10.1177/1729881419841532
[9]
WAN Guowei, YANG Xiaolong, CAI Renlan, et al. Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes[C]. Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 2018: 4670–4677.
HU Zhaozheng, LIU Jiahui, HUANG Gang, et al. Integration of WiFi, laser, and map for robot indoor localization[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2308–2316. doi: 10.11999/JEIT200671
[11]
YIN Huan, WANG Yue, DING Xiaqing, et al. 3D LiDAR-based global localization using Siamese neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1380–1392. doi: 10.1109/TITS.2019.2905046
[12]
KIM G, CHOI S, and KIM A. Scan context++: Structural place recognition robust to rotation and lateral variations in urban environments[J]. IEEE Transactions on Robotics, 2022, 38(3): 1856–1874. doi: 10.1109/TRO.2021.3116424
[13]
CHEN Xieyuanli, LÄBE T, MILIOTO A, et al. OverlapNet: A siamese network for computing LiDAR scan similarity with applications to loop closing and localization[J]. Autonomous Robots, 2022, 46(1): 61–81. doi: 10.1007/s10514-021-09999-0
[14]
BROMLEY J, GUYON I, LECUN Y, et al. Signature verification using a “Siamese” time delay neural network[C]. Proceedings of the 6th International Conference on Neural Information Processing Systems (NIPS), Denver, USA, 1993: 737–744.
[15]
BAY H, ESS A, TUYTELAARS T, et al. Speeded–up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346–359. doi: 10.1016/j.cviu.2007.09.014
[16]
FISCHLER M A and BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381–395. doi: 10.1145/358669.358692
[17]
SERVOS J and WASLANDER S L. Multi-channel generalized-ICP: A robust framework for multi-channel scan registration[J]. Robotics and Autonomous Systems, 2017, 87: 247–257. doi: 10.1016/j.robot.2016.10.016
[18]
GEIGER A, LENZ P, and URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]. Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, USA, 2012: 3354–3361.
LUO Yan, WANG Cong, YE Wenling. An Interpretable Prediction Model for Acute Kidney Injury Based on XGBoost and SHAP[J]. Journal of Electronics & Information Technology, 2022, 44(1): 27-38. doi: 10.11999/JEIT210931
LUO Yan, WANG Cong, YE Wenling. An Interpretable Prediction Model for Acute Kidney Injury Based on XGBoost and SHAP[J]. Journal of Electronics & Information Technology, 2022, 44(1): 27-38. doi: 10.11999/JEIT210931