Advanced Search
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
LÜ Jindong, WANG Tong, TANG Xiaobin. Semi-supervised SAR Ship Target Detection with Graph Attention Network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1541-1549. doi: 10.11999/JEIT220139
Citation: LÜ Jindong, WANG Tong, TANG Xiaobin. Semi-supervised SAR Ship Target Detection with Graph Attention Network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1541-1549. doi: 10.11999/JEIT220139

Semi-supervised SAR Ship Target Detection with Graph Attention Network

doi: 10.11999/JEIT220139
Funds:  The National Key R&D Program of China (2016YFE0200400)
  • Received Date: 2022-02-15
  • Rev Recd Date: 2022-06-21
  • Available Online: 2022-06-30
  • Publish Date: 2023-05-10
  • Recently, ship target detection in Synthetic Aperture Radar (SAR) imagery based on deep learning has been widely developed. However, a large number of labeled samples are needed in traditionally supervised learning to train the network. Therefore, a semi-supervised SAR ship target detection approach based on Graph ATtention network (GAT) is proposed. Firstly, a symmetric convolutional neural network is designed to realize land-ocean segmentation. Secondly, the super-pixel segmentation is completed and the super-pixels are modeled as nodes of the GAT. The multi-scale features of a node are extracted by region of interest pooling layer. Attentional mechanisms are used in GAT to concatenate adaptively the neighbor node’s features and classify the unlabeled nodes. Finally, the super-pixels predicted as ship targets are located in SAR image and the fine detection results are obtained. The proposed method is verified on the measured high resolution SAR images dataset. The results show that this method can effectively detect ship targets with low false alarm rate by using a small number of labeled samples.
  • loading
  • [1]
    邱宇. 高分辨率SAR图像近海岸舰船目标检测与分类研究[D]. [硕士论文], 哈尔滨工业大学, 2020.

    QIU Yu. Nearshore ships detection and classification for high resolution SAR images[D]. [Master dissertation], Harbin Institute of Technology, 2020.
    [2]
    GAO Gui. A Parzen-window-kernel-based CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 557–561. doi: 10.1109/LGRS.2010.2090492
    [3]
    杜兰, 王兆成, 王燕, 等. 复杂场景下单通道SAR目标检测及鉴别研究进展综述[J]. 雷达学报, 2020, 9(1): 34–54. doi: 10.12000/JR19104

    DU Lan, WANG Zhaocheng, WANG Yan, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9(1): 34–54. doi: 10.12000/JR19104
    [4]
    WANG Xueqian, LI Gang, ZHANG Xiaoping, et al. A fast CFAR algorithm based on density-censoring operation for ship detection in SAR images[J]. IEEE Signal Processing Letters, 2021, 28: 1085–1089. doi: 10.1109/LSP.2021.3082034
    [5]
    AI Jiaqiu, MAO Yuxiang, LUO Qiwu, et al. Robust CFAR ship detector based on bilateral-trimmed-statistics of complex ocean scenes in SAR imagery: A closed-form solution[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1872–1890. doi: 10.1109/TAES.2021.3050654
    [6]
    付晓雅, 王兆成. 结合场景分类的近岸区域SAR舰船目标快速检测方法[J]. 信号处理, 2020, 36(12): 2123–2130. doi: 10.16798/j.issn.1003-0530.2020.12.019

    FU Xiaoya and WANG Zhaocheng. SAR ship target rapid detection method combined with scene classification in the inshore region[J]. Journal of Signal Processing, 2020, 36(12): 2123–2130. doi: 10.16798/j.issn.1003-0530.2020.12.019
    [7]
    HOU Biao, YANG Wei, WANG Shuang, et al. SAR image ship detection based on visual attention model[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 2003–2006.
    [8]
    WANG Yinghua and LIU Hongwei. A hierarchical ship detection scheme for high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 4173–4184. doi: 10.1109/TGRS.2012.2189011
    [9]
    LENG Xiangguang, JI Kefeng, ZHOU Shilin, et al. Ship detection based on complex signal kurtosis in single-channel SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6447–6461. doi: 10.1109/TGRS.2019.2906054
    [10]
    CHEN Shiyuan, LI Xiaojiang, CHI Shaoquan, et al. Ship target discrimination in SAR images based on BOW model with multiple features and spatial pyramid matching[J]. IEEE Access, 2020, 8: 166071–166082. doi: 10.1109/ACCESS.2020.3022642
    [11]
    YANG Xulei and DING Jie. A computational framework for iceberg and ship discrimination: Case study on Kaggle competition[J]. IEEE Access, 2020, 8: 82320–82327. doi: 10.1109/ACCESS.2020.2990985
    [12]
    ZHAO Yan, ZHAO Lingjun, XIONG Boli, et al. Attention receptive pyramid network for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2738–2756. doi: 10.1109/JSTARS.2020.2997081
    [13]
    WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems 2021, 32(1): 4–24.
    [14]
    VELICKOVIC R, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
    [15]
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120
    [16]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [17]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
    [18]
    WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234–120254. doi: 10.1109/ACCESS.2020.3005861
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (899) PDF downloads(254) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return