Citation: | WU Ruidong, LIU Bing, FU Ping, JI Xinglong, LU Wenshuai. Convolutional Neural Network Accelerator Architecture Design for Ultimate Edge Computing Scenario[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1933-1943. doi: 10.11999/JEIT220130 |
[1] |
BIANCHI V, BASSOLI M, LOMBARDO G, et al. IoT wearable sensor and deep learning: An integrated approach for personalized human activity recognition in a smart home environment[J]. IEEE Internet of Things Journal, 2019, 6(5): 8553–8562. doi: 10.1109/JIOT.2019.2920283
|
[2] |
施巍松, 张星洲, 王一帆, 等. 边缘计算: 现状与展望[J]. 计算机研究与发展, 2019, 56(1): 69–89. doi: 10.7544/issn1000-1239.2019.20180760
SHI Weisong, ZHANG Xingzhou, WANG Yifan, et al. Edge computing: State-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69–89. doi: 10.7544/issn1000-1239.2019.20180760
|
[3] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
[4] |
ROY S K, KRISHNA G, DUBEY S R, et al. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277–281. doi: 10.1109/LGRS.2019.2918719
|
[5] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826
|
[6] |
USAMA M, AHMAD B, SONG Enmin, et al. Attention-based sentiment analysis using convolutional and recurrent neural network[J]. Future Generation Computer Systems, 2020, 113: 571–578. doi: 10.1016/j.future.2020.07.022
|
[7] |
WAN Shaohua and GOUDOS S. Faster R-CNN for multi-class fruit detection using a robotic vision system[J]. Computer Networks, 2020, 168: 107036. doi: 10.1016/j.comnet.2019.107036
|
[8] |
ACHARYA J and BASU A. Deep neural network for respiratory sound classification in wearable devices enabled by patient specific model tuning[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(3): 535–544. doi: 10.1109/TBCAS.2020.2981172
|
[9] |
WANG Yu, YANG Jie, LIU Miao, et al. LightAMC: Lightweight automatic modulation classification via deep learning and compressive sensing[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3491–3495. doi: 10.1109/TVT.2020.2971001
|
[10] |
WU Huaqiang, LYU Feng, ZHOU Conghao, et al. Optimal UAV caching and trajectory in aerial-assisted vehicular networks: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(12): 2783–2797. doi: 10.1109/JSAC.2020.3005469
|
[11] |
Bitcraze. Crazyflie 2.1[EB/OL]. https://www.bitcraze.io/products/crazyflie-2-1/, 2022.
|
[12] |
PALOSSI D, LOQUERCIO A, CONTI F, et al. A 64-mW DNN-based visual navigation engine for autonomous nano-drones[J]. IEEE Internet of Things Journal, 2019, 6(5): 8357–8371. doi: 10.1109/JIOT.2019.2917066
|
[13] |
NICULESCU V, LAMBERTI L, CONTI F, et al. Improving autonomous nano-drones performance via automated end-to-end optimization and deployment of DNNs[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11(4): 548–562. doi: 10.1109/JETCAS.2021.3126259
|
[14] |
PALOSSI D, ZIMMERMAN N, BURRELLO A, et al. Fully onboard AI-powered human-drone pose estimation on ultralow-power autonomous flying nano-UAVs[J]. IEEE Internet of Things Journal, 2022, 9(3): 1913–1929. doi: 10.1109/JIOT.2021.3091643
|
[15] |
刘勤让, 刘崇阳. 利用参数稀疏性的卷积神经网络计算优化及其FPGA加速器设计[J]. 电子与信息学报, 2018, 40(6): 1368–1374. doi: 10.11999/JEIT170819
LIU Qinrang and LIU Chongyang. Calculation optimization for convolutional neural networks and FPGA-based accelerator design using the parameters sparsity[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1368–1374. doi: 10.11999/JEIT170819
|
[16] |
秦华标, 曹钦平. 基于FPGA的卷积神经网络硬件加速器设计[J]. 电子与信息学报, 2019, 41(11): 2599–2605. doi: 10.11999/JEIT190058
QIN Huabiao and CAO Qinping. Design of convolutional neural networks hardware acceleration based on FPGA[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2599–2605. doi: 10.11999/JEIT190058
|
[17] |
YUAN Tian, LIU Weiqiang, HAN Jie, et al. High performance CNN accelerators based on hardware and algorithm co-optimization[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(1): 250–263. doi: 10.1109/TCSI.2020.3030663
|
[18] |
GONG Lei, WANG Chao, LI Xi, et al. MALOC: A fully pipelined FPGA accelerator for convolutional neural networks with all layers mapped on chip[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(11): 2601–2612. doi: 10.1109/TCAD.2018.2857078
|
[19] |
WANG Chao, GONG Lei, YU Qi, et al. DLAU: A scalable deep learning accelerator unit on FPGA[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36(3): 513–517. doi: 10.1109/TCAD.2016.2587683
|
[20] |
DING Wei, HUANG Zeyu, HUANG Zunkai, et al. Designing efficient accelerator of depthwise separable convolutional neural network on FPGA[J]. Journal of Systems Architecture, 2019, 97: 278–286. doi: 10.1016/j.sysarc.2018.12.008
|
[21] |
BLOTT M, PREUßER T B, FRASER N J, et al. FINN-R: An end-to-end deep-learning framework for fast exploration of quantized neural networks[J]. ACM Transactions on Reconfigurable Technology and Systems, 2018, 11(3): 16. doi: 10.1145/3242897
|
[22] |
BAI Lin, ZHAO Yiming, and HUANG Xinming. A CNN accelerator on FPGA using depthwise separable convolution[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2018, 65(10): 1415–1419. doi: 10.1109/TCSII.2018.2865896
|
[23] |
GUO Kaiyuan, SUI Lingzhi, QIU Jiantao, et al. Angel-eye: A complete design flow for mapping CNN onto embedded FPGA[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(1): 35–47. doi: 10.1109/TCAD.2017.2705069
|
[24] |
ZHU Jiang, WANG Lizan, LIU Haolin, et al. An efficient task assignment framework to accelerate DPU-based convolutional neural network inference on FPGAs[J]. IEEE Access, 2020, 8: 83224–83237. doi: 10.1109/ACCESS.2020.2988311
|