Citation: | CHEN Yong, JIN Manli, LIU Huanlin, WANG Bo, HUANG Meiyong. Small-scale Pedestrian Detection Based on Feature Enhancement Strategy[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1445-1453. doi: 10.11999/JEIT220122 |
[1] |
张功国, 吴建, 易亿, 等. 基于集成卷积神经网络的交通标志识别[J]. 重庆邮电大学学报:自然科学版, 2019, 31(4): 571–577. doi: 10.3979/j.issn.1673-825X.2019.04.019
ZHANG Gongguo, WU Jian, YI Yi, et al. Traffic sign recognition based on ensemble convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(4): 571–577. doi: 10.3979/j.issn.1673-825X.2019.04.019
|
[2] |
高新波, 路文, 查林, 等. 超高清视频画质提升技术及其芯片化方案[J]. 重庆邮电大学学报:自然科学版, 2020, 32(5): 681–697. doi: 10.3979/j.issn.1673-825X.2020.05.001
GAO Xinbo, LU Wen, ZHA Lin, et al. Quality elevation technique for UHD video and its VLSI solution[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2020, 32(5): 681–697. doi: 10.3979/j.issn.1673-825X.2020.05.001
|
[3] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
|
[4] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
|
[5] |
LU Chengye, WU Sheng, JIANG Chunxiao, et al. Weak harmonic signal detection method in chaotic interference based on extended Kalman filter[J]. Digital Communications and Networks, 2019, 5(1): 51–55. doi: 10.1016/j.dcan.2018.10.004
|
[6] |
LUO Xiong, LI Jianyuan, WANG Weiping, et al. Towards improving detection performance for malware with a correntropy-based deep learning method[J]. Digital Communications and Networks, 2021, 7(4): 570–579. doi: 10.1016/j.dcan.2021.02.003
|
[7] |
LI Jianan, LIANG Xiaodan, WEI Yunchao, et al. Perceptual generative adversarial networks for small object detection[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1951–1959.
|
[8] |
CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154–6162.
|
[9] |
HU Han, GU Jiayuan, ZHANG Zheng, et al. Relation networks for object detection[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3588–3597.
|
[10] |
KRISHNA H and JAWAHAR C V. Improving small object detection[C]. Proceedings of the 4th IAPR Asian Conference on Pattern Recognition, Nanjing, China, 2017: 340–345.
|
[11] |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNeT: A new backbone that can enhance learning capability of CNN[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, United States, 2020: 1571–1580.
|
[12] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/tpami.2015.2389824
|
[13] |
GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL]. https://arxiv.org/abs/2107.08430, 2021.
|
[14] |
SHAO Shuai, ZHAO Zijian, LI Boxun, et al. CrowdHuman: A benchmark for detecting human in a crowd[EB/OL]. https://arxiv.org/abs/1805.00123, 2018.
|
[15] |
ZHANG Shanshan, BENENSON R, and SCHIELE B. CityPersons: A diverse dataset for pedestrian detection[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4457–4465.
|
[16] |
BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934, 2020.
|
[17] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826
|
[18] |
ZHOU Xingyi, WANG Dequan, and KRÄHENBÜHL P. Objects as points[EB/OL]. https://arxiv.org/abs/1904.07850, 2019.
|
[19] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
|
[20] |
WANG Xinlong, XIAO Tete, JIANG Yuning, et al. Repulsion loss: Detecting pedestrians in a crowd[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7774–7783.
|
[21] |
SONG Tao, SUN Leiyu, XIE Di, et al. Small-scale pedestrian detection based on topological line localization and temporal feature aggregation[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 554–569.
|
[22] |
LIU Wei, LIAO Shengcai, HU Weidong, et al. Learning efficient single-stage pedestrian detectors by asymptotic localization fitting[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 643–659.
|
[23] |
FEI Chi, LIU Bin, CHEN Zhu, et al. Learning pixel-level and instance-level context-aware features for pedestrian detection in crowds[J]. IEEE Access, 2019, 7: 94944–94953. doi: 10.1109/ACCESS.2019.2928879
|
[24] |
CAO Jiale, PANG Yanwei, HAN Jungong, et al. Taking a look at small-scale pedestrians and occluded pedestrians[J]. IEEE Transactions on Image Processing, 2019, 29: 3143–3152. doi: 10.1109/TIP.2019.2957927
|
[25] |
ZHANG Shifeng, WEN Longyin, BIAN Xiao, et al. Occlusion-aware R-CNN: Detecting pedestrians in a crowd[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 657–674.
|
[26] |
LIU Wei, LIAO Shengcai, REN Weiqiang, et al. High-level semantic feature detection: A new perspective for pedestrian detection[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5182–5191.
|
[27] |
ZHANG Yihan. Multi-scale object detection model with anchor free approach and center of gravity prediction[C]. Proceedings of 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 2020: 38–45.
|
[28] |
陈勇, 谢文阳, 刘焕淋, 等. 结合头部和整体信息的多特征融合行人检测[J]. 电子与信息学报, 2022, 44(4): 1453–1460. doi: 10.11999/JEIT210268
CHEN Yong, XIE Wenyang, LIU Huanlin, et al. Multi-feature fusion pedestrian detection combining head and overall information[J]. Journal of Electronics &Information Technology, 2022, 44(4): 1453–1460. doi: 10.11999/JEIT210268
|