Citation: | YAO Yuxuan, SUN Zhaohui, GAO Yubing, WU Qi. Feature Extraction and Analysis of fNIRS Signals Based on Linear Mapping Field[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1401-1411. doi: 10.11999/JEIT220120 |
[1] |
朱朝喆. 近红外光谱脑功能成像[M]. 北京: 科学出版社, 2020: 4–5.
ZHU Chaozhe. Functional Near-infrared Spectropy[M]. Beijing: Science Press, 2020: 4–5.
|
[2] |
JIANG Xingxing, SHEN Changqing, SHI Juanjuan, et al. Initial center frequency-guided VMD for fault diagnosis of rotating machines[J]. Journal of Sound and Vibration, 2018, 435: 36–55. doi: 10.1016/j.jsv.2018.07.039
|
[3] |
LIU Changfu, ZHU Lida, and NI Chenbing. Chatter detection in milling process based on VMD and energy entropy[J]. Mechanical Systems and Signal Processing, 2018, 105: 169–182. doi: 10.1016/j.ymssp.2017.11.046
|
[4] |
ZHANG Yagang, ZHAO Yuan, KONG Chunhui, et al. A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic[J]. Energy Conversion and Management, 2020, 203: 112254. doi: 10.1016/j.enconman.2019.112254
|
[5] |
LU Chunming, ZHANG Yujin, BISWAL B B, et al. Use of fNIRS to assess resting state functional connectivity[J]. Journal of Neuroscience Methods, 2010, 186(2): 242–249. doi: 10.1016/j.jneumeth.2009.11.010
|
[6] |
ZHANG Han, ZHANG Yujin, LU Chunming, et al. Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements[J]. Neuroimage, 2010, 51(3): 1150–1161. doi: 10.1016/j.neuroimage.2010.02.080
|
[7] |
BRIER M R, THOMAS J B, FAGAN A M, et al. Functional connectivity and graph theory in preclinical Alzheimer's disease[J]. Neurobiology of Aging, 2014, 35(4): 757–768. doi: 10.1016/j.neurobiolaging.2013.10.081
|
[8] |
NIU Haijing, LU Chunming, ZHU Chaozhe, et al. Resting-state functional connectivity assessed with two diffuse optical tomographic systems[J]. Journal of Biomedical Optics, 2011, 16(4): 046006. doi: 10.1117/1.3561687
|
[9] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
[10] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[11] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
|
[12] |
WANG Zhiguang and OATES T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks[C]. Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, USA, 2015: 40–46.
|
[13] |
HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
|
[14] |
WU Zhaohua and HUANG NORDEN E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41. doi: 10.1142/S1793536909000047
|
[15] |
YEH J R, SHIEH J S, and HUANG N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135–156. doi: 10.1142/S1793536910000422
|
[16] |
TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011: 4144–4147.
|
[17] |
DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675
|
[18] |
CHEN Junhao and TSAI Y C. Encoding candlesticks as images for pattern classification using convolutional neural networks[J]. Financial Innovation, 2020, 6(1): 26. doi: 10.1186/s40854-020-00187-0
|
[19] |
MITICHE I, MORISON G, NESBITT A, et al. Imaging time series for the classification of EMI discharge sources[J]. Sensors, 2018, 18(9): 3098. doi: 10.3390/s18093098
|
[20] |
BARRA S, CARTA S M, CORRIGA A, et al. Deep learning and time series-to-image encoding for financial forecasting[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(3): 683–692. doi: 10.1109/JAS.2020.1003132
|
[21] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770–778.
|
[22] |
BAK S, PARK J, SHIN J, et al. Open-access fNIRS dataset for classification of unilateral finger- and foot-tapping[J]. Electronics, 2019, 8(12): 1486. doi: 10.3390/electronics8121486
|
[23] |
HOU Xin, ZHANG Zong, ZHAO Chen, et al. NIRS-KIT: A MATLAB toolbox for both resting-state and task fNIRS data analysis[J]. Neurophotonics, 2021, 8(1): 010802. doi: 10.1117/1.NPh.8.1.010802
|
[24] |
COMBRISSON E and JERBI K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy[J]. Journal of Neuroscience Methods, 2015, 250: 126–136. doi: 10.1016/j.jneumeth.2015.01.010
|
[25] |
GROSSMANN A and MORLET J. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. SIAM Journal on Mathematical Analysis, 1984, 15(4): 723–736. doi: 10.1137/0515056
|
[26] |
SIDDIQUE T and MAHMUD M S. Classification of fNIRS data under uncertainty: A Bayesian neural network approach[C]. 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM), Shenzhen, China, 2021: 1–4.
|
[27] |
KUANG Dongyang and MICHOSKI C. Dual stream neural networks for brain signal classification[J]. Journal of Neural Engineering, 2021, 18(1): 016006. doi: 10.1088/1741-2552/abc903
|
[28] |
ZAREMBA W, SUTSKEVER I, and VINYALS O. Recurrent neural network regularization[J]. arXiv: 1409.2329, 2014.
|
[29] |
SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. The 28th International Conference on Neural Information Processing Systems, Montréal, Canada, 2015: 802–810.
|
[30] |
CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. The 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014: 1724–1734.
|