Citation: | MA Shuai, GAO Mengdi, CAO Shiyu, FANG Xiao, ZHANG Guanjie, WANG Hongmei, LI Shiyin. Research on Optimal Beamforming Design of Ultra-low Frequency Antenna[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1338-1345. doi: 10.11999/JEIT220119 |
[1] |
罗卓颖, 刘翠海, 黄玉成, 等. 超低频传播特性分析[J]. 舰船电子工程, 2009, 29(2): 148–150. doi: 10.3969/j.issn.1627-9730.2009.02.044
LUO Zhuoying, LIU Cuihai, HUANG Yucheng, et al. Analysis of the characteristic of super low frequency propagation[J]. Ship Electronic Engineering, 2009, 29(2): 148–150. doi: 10.3969/j.issn.1627-9730.2009.02.044
|
[2] |
CHU L J. Physical limitations of omni-directional antennas[J]. Journal of Applied Physics, 1948, 19(12): 1163–1175. doi: 10.1063/1.1715038
|
[3] |
HARRINGTON R F. Effect of natenna size on gain, bandwidth, and efficiency[J]. Journal of Research of the National Bureau of Standards, 1960, 64D(1): 1–12. doi: 10.6028/jres.064d.003
|
[4] |
王洪民, 阚锎. 大功率低频、超低频放大器实现途径及特点[J]. 电子测量技术, 2011, 34(9): 18–22. doi: 10.19651/j.cnki.emt.2011.09.006
WANG Hongmin and KAN Kai. Realization approach and characteristics of high power low-frequency ultra-low frequency amplifier[J]. Electronic Measurement Technology, 2011, 34(9): 18–22. doi: 10.19651/j.cnki.emt.2011.09.006
|
[5] |
DARPA. A MEchanically based antenna (AMEBA)[P]. US, HR001117S0007, 2016.
|
[6] |
丁宏. DARPA机械天线项目或掀起军事通信革命[J]. 现代军事, 2017(4): 71–73.
DING Hong. DARPA’s mechanical antenna program could revolutionize military communication[J]. Conmilit, 2017(4): 71–73.
|
[7] |
SELVIN S, PRASAD M N S, HUANG Yikun, et al. Spinning magnet antenna for VLF transmitting[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017: 1477–1478.
|
[8] |
PRASAD M N S, SELVIN S, TOK R U, et al. Directly modulated spinning magnet arrays for ULF communications[C]. 2018 IEEE Radio and Wireless Symposium, Anaheim, USA, 2018: 171–173.
|
[9] |
BARANI N and SARABANDI K. Mechanical antennas: Emerging solution for Very-Low Frequency (VLF) communication[C]. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, 2018: 95–96.
|
[10] |
FAWOLE O C and TABIB-AZAR M. An electromechanically modulated permanent magnet antenna for wireless communication in harsh electromagnetic environments[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6927–6936. doi: 10.1109/TAP.2017.2761555
|
[11] |
GOŁKOWSKI M, PARK J, BITTLE J, et al. Novel mechanical magnetic shutter antenna for ELF/VLF radiation[C]. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, 2018: 65–66.
|
[12] |
SRINIVAS P M N, TOK R U, and WANG Y E. Magnetic pendulum arrays for ULF transmission[C]. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, 2018: 71–72.
|
[13] |
曹峻. ELF-ULF机械通信天线的研究[D]. [硕士论文], 西安电子科技大学, 2020.
CAO Jun. Research on ELF-ULF mechanical communication antenna[D]. [Master dissertation], Xidian University, 2020.
|
[14] |
周强, 施伟, 刘斌, 等. 旋转永磁式机械天线的研究与实现[J]. 国防科技大学学报, 2020, 42(3): 128–136. doi: 10.11887/j.cn.202003017
ZHOU Qiang, SHI Wei, LIU Bin, et al. Research and practice of the mechanical antennas based on rotating permanent magnet[J]. Journal of National University of Defense Technology, 2020, 42(3): 128–136. doi: 10.11887/j.cn.202003017
|
[15] |
施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析[J]. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
SHI Wei, ZHOU Qiang, and LIU Bin. Performance analysis of spinning magnet as mechanical antenna[J]. Acta Physica Sinica, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
|