Citation: | SUN Hui, SHI Yulong, WANG Rui. Study of Coarse-to-Fine Class Activation Mapping Algorithms Based on Contrastive Layer-wise Relevance Propagation[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1454-1463. doi: 10.11999/JEIT220113 |
[1] |
时增林, 叶阳东, 吴云鹏, 等. 基于序的空间金字塔池化网络的人群计数方法[J]. 自动化学报, 2016, 42(6): 866–874. doi: 10.16383/j.aas.2016.c150663
SHI Zenglin, YE Yangdong, WU Yunpeng, et al. Crowd counting using rank-based spatial pyramid pooling network[J]. Acta Automatica Sinica, 2016, 42(6): 866–874. doi: 10.16383/j.aas.2016.c150663
|
[2] |
付晓薇, 杨雪飞, 陈芳, 等. 一种基于深度学习的自适应医学超声图像去斑方法[J]. 电子与信息学报, 2020, 42(7): 1782–1789. doi: 10.11999/JEIT190580
FU Xiaowei, YANG Xuefei, CHEN Fang, et al. An adaptive medical ultrasound images despeckling method based on deep learning[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1782–1789. doi: 10.11999/JEIT190580
|
[3] |
PU Fangling, DING Chujiang, CHAO Zeyi, et al. Water-quality classification of inland lakes using Landsat8 images by convolutional neural networks[J]. Remote Sensing, 2019, 11(14): 1674. doi: 10.3390/rs11141674
|
[4] |
SAMBASIVAM G and OPIYO G D. A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks[J]. Egyptian Informatics Journal, 2021, 22(1): 27–34. doi: 10.1016/j.eij.2020.02.007
|
[5] |
ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833.
|
[6] |
ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Object detectors emerge in deep scene CNNs[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[7] |
PETSIUK V, DAS A, and SAENKO K. RISE: Randomized input sampling for explanation of black-box models[C]. British Machine Vision Conference 2018, Newcastle, UK, 2018.
|
[8] |
FONG R C and VEDALDI A. Interpretable explanations of black boxes by meaningful perturbation[C]. The IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3449–3457.
|
[9] |
AGARWAL C, SCHONFELD D, and NGUYEN A. Removing input features via a generative model to explain their attributions to an image classifier's decisions[EB/OL]. https://arxiv.org/abs/1910.042562019, 2019.
|
[10] |
CHANG Chunhao, CREAGER E, GOLDENBERG A, et al. Explaining image classifiers by counterfactual generation[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[11] |
SIMONYAN K, VEDALDI A, and ZISSERMAN A. Deep inside convolutional networks: Visualising image classification models and saliency maps[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
[12] |
SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity: The all convolutional net[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[13] |
BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J]. PloS One, 2015, 10(7): e0130140. doi: 10.1371/journal.pone.0130140
|
[14] |
ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2921–2929.
|
[15] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. The IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618–626.
|
[16] |
CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks[C]. 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, USA, 2018: 839–847.
|
[17] |
OMEIZA D, SPEAKMAN S, CINTAS C, et al. Smooth grad-cam++: An enhanced inference level visualization technique for deep convolutional neural network models[EB/OL]. https://arxiv.org/abs/1908.01224, 2019.
|
[18] |
WANG Haofan, WANG Zifan, DU Mengnan, et al. Score-CAM: Score-weighted visual explanations for convolutional neural networks[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 111–119.
|
[19] |
GU Jindong, YANG Yinchong, and TRESP V. Understanding individual decisions of CNNs via contrastive backpropagation[C]. The 14th Asian Conference on Computer Vision, Perth, Australia, 2018: 119–134.
|
[20] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
|
[21] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[22] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
|
[23] |
LEE J R, KIM S, PARK I, et al. Relevance-CAM: Your model already knows where to look[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 14939–14948.
|
[24] |
SATTARZADEH S, SUDHAKAR M, PLATANIOTIS K N, et al. Integrated Grad-CAM: Sensitivity-aware visual explanation of deep convolutional networks via integrated gradient-based scoring[C]. ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, 2021: 1775–1779.
|
[25] |
ZHANG Qinglong, RAO Lu, and YANG Yubin. Group-CAM: Group score-weighted visual explanations for deep convolutional networks[EB/OL]. https://arxiv.org/abs/2103.13859, 2021.
|
[26] |
WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD birds-200-2011 dataset[R]. CNS-TR-2011-001, 2011.
|
[27] |
RUSSAKOVSKY O, DENG Jia, SU Hao, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211–252. doi: 10.1007/s11263-015-0816-y
|
[28] |
SMILKOV D, THORAT N, KIM B, et al. SmoothGrad: Removing noise by adding noise[EB/OL]. https://arxiv.org/abs/1706.03825, 2017.
|
[29] |
SUNDARARAJAN M, TALY A, and YAN Qiqi. Axiomatic attribution for deep networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 3319–3328.
|
[30] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[31] |
WU Pingyu, ZHAI Wei, and CAO Yang. Background activation suppression for weakly supervised object localization[EB/OL]. https://arxiv.org/abs/2112.00580, 2022.
|