Citation: | CHEN Chen, YUAN Shaojun, YIN Zhaolei, HE Xiaohong, YANG Manman, LI Runxin. A Fluctuation Quantitative Evaluation Method for Distributed Energy Power Time Series[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3825-3832. doi: 10.11999/JEIT220096 |
[1] |
CHEN Yulin, QI Donglian, DONG Hangning, et al. A FDI attack-resilient distributed secondary control strategy for islanded microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12(3): 1929–1938. doi: 10.1109/TSG.2020.3047949
|
[2] |
ACKERMANN T. Wind power in power systems[J]. IEEE Power Engineering Review, 2013, 22(12): 23–27.
|
[3] |
CHEN Yulin, LI Chaoyong, QI Donglian, et al. Distributed event-triggered secondary control for islanded microgrids with proper trigger condition checking period[J]. IEEE Transactions on Smart Grid, 2022, 13(2): 837–848. doi: 10.1109/TSG.2021.3115180
|
[4] |
李俊, 王振宇, 向洁. 分布式蓄热电锅炉对弃风电量的消纳能力评估[J]. 电力科学与技术学报, 2021, 36(1): 185–191. doi: 10.19781/j.issn.1673-9140.2021.01.021
LI Jun, WANG Zhenyu, and XIANG Jie. Study on ability of distributed electric boilers with thermal storage in abandoned wind power consumption[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 185–191. doi: 10.19781/j.issn.1673-9140.2021.01.021
|
[5] |
WANG Jiangfeng, SUN Kai, WU Hongfei, et al. Hybrid connected unified power quality conditioner integrating distributed generation with reduced power capacity and enhanced conversion efficiency[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12340–12352. doi: 10.1109/TIE.2020.3040687
|
[6] |
肖创英, 汪宁渤, 陟晶, 等. 甘肃酒泉风电出力特性分析[J]. 电力系统自动化, 2010, 34(17): 64–67.
XIAO Ghuangying, WANG Ningbo, ZHI Jing, et al. Power characteristics of Jiuquan wind power base[J]. Automation of Electric Power Systems, 2010, 34(17): 64–67.
|
[7] |
林卫星, 文劲宇, 艾小猛, 等. 风电功率波动特性的概率分布研究[J]. 中国电机工程学报, 2012, 32(1): 38–46. doi: 10.13334/j.0258-8013.pcsee.2012.01.010
LIN Weixing, WEN Jinyu, AI Xiaomeng, et al. Probability density function of wind power variations[J]. Proceedings of the CSEE, 2012, 32(1): 38–46. doi: 10.13334/j.0258-8013.pcsee.2012.01.010
|
[8] |
张宁宇, 周前, 刘建坤. 江苏海上、沿海和内陆风电出力及波动特性分析[J]. 中国电力, 2020, 53(7): 18–23.
ZHANG Ningyu, ZHOU Qian, and LIU Jiankun. Output and fluctuation characteristics of off-shore, coastal and inland wind farms in Jiangsu province[J]. Electric Power, 2020, 53(7): 18–23.
|
[9] |
崔杨, 穆钢, 刘玉, 等. 风电功率波动的时空分布特性[J]. 电网技术, 2011, 35(2): 110–114. doi: 10.13335/j.1000-3673.pst.2011.02.017
CUI Yang, MU Gang, LIU Yu, et al. Spatiotemporal distribution characteristic of wind power fluctuation[J]. Power System Technology, 2011, 35(2): 110–114. doi: 10.13335/j.1000-3673.pst.2011.02.017
|
[10] |
周统汉, 陈峦, 李坚. 基于有限混合Laplace模型的风功率波动特性研究[J]. 电网技术, 2017, 41(2): 543–550. doi: 10.13335/j.1000-3673.pst.2016.0844
ZHOU Tonghan, CHEN Luan, and LI Jian. Wind power fluctuation characteristic analysis based on finite Laplace mixture model[J]. Power System Technology, 2017, 41(2): 543–550. doi: 10.13335/j.1000-3673.pst.2016.0844
|
[11] |
SORENSEN P, CUTULULIS N A, VIGUERAS-RODRIGUEZ A, et al. Power fluctuations from large wind farms[J]. IEEE Transactions on Power Systems, 2007, 22(3): 958–965. doi: 10.1109/TPWRS.2007.901615
|
[12] |
SUNDARARAJAN A and SARWAT A I. Evaluation of missing data imputation methods for an enhanced distributed PV generation prediction[C]. Proceedings of Future Technologies Conference 2019, San Francisco: USA, 2020: 56–68.
|
[13] |
CHENG Lilin, ZANG Haixiang, XU Yan, et al. Augmented convolutional network for wind power prediction: A new recurrent architecture design with spatial-temporal image inputs[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6981–6993. doi: 10.1109/TII.2021.3063530
|
[14] |
杨茂, 陈郁林, 魏治成. 基于EEMD去噪和集对理论的风功率实时预测研究[J]. 太阳能学报, 2018, 39(5): 1440–1448.
YANG Mao, CHEN Yulin, and WEI Zhicheng. Real-time prediction for wind power based on EEMD denoising and theory of spa[J]. Acta Energiae Solaris Sinica, 2018, 39(5): 1440–1448.
|
[15] |
BANAKAR H and OOI B T. Clustering of wind farms and its sizing impact[J]. IEEE Transactions on Energy Conversion, 2009, 24(4): 935–942. doi: 10.1109/TEC.2008.2001454
|
[16] |
YE Yida, QIAO Ying, LU Zongxiang, et al. Offshore wind power outputs in multiple temporal and spatial scales[C]. Proceedings of 2014 International Conference on Power System Technology, Chengdu, China, 2014: 2781–2787.
|
[17] |
杨茂, 陈郁林. 风电功率波动特性定量刻画及应用研究[J]. 太阳能学报, 2019, 40(6): 1771–1779.
YANG Mao and CHEN Yulin. A study for quantitative characterization of wind power fluctuations and its applications[J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1771–1779.
|
[18] |
ZHOU Ziqiang, PENG Shu, CHEN Yulin, et al. Quantitative characterization of wind power fluctuation[C]. Proceedings of 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 2020: 3089–3094.
|
[19] |
DAI Juchuan, CAO Junwei, LIU Deshun, et al. Power fluctuation evaluation of large-scale wind turbines based on SCADA data[J]. IET Renewable Power Generation, 2017, 11(4): 395–402. doi: 10.1049/iet-rpg.2016.0124
|
[20] |
钟佑明, 金涛, 秦树人. 希尔伯特-黄变换中的一种新包络线算法[J]. 数据采集与处理, 2005, 20(1): 13–17. doi: 10.3969/j.issn.1004-9037.2005.01.003
ZHONG Youming, JIN Tao, and QIN Shuren. New envelope algorithm for Hilbert-Huang transform[J]. Journal of Data Acquisition &Processing, 2005, 20(1): 13–17. doi: 10.3969/j.issn.1004-9037.2005.01.003
|
[21] |
张纪平. Lebesgue积分迫敛性定理及其应用[J]. 黑河学院学报 2013, 4(5): 117–118.
ZHANG Jiping. Lebesgue squeeze theorem and its applications[J]. Journal of Heihe University, 2013, 33(5): 117–118.
|
[22] |
李丽, 叶林. 基于改进持续法的短期风电功率预测[J]. 农业工程学报, 2010, 26(12): 182–187. doi: 10.3969/j.issn.1002-6819.2010.12.031
LI Li and YE Lin. Short-term wind power forecasting based on an improved persistence approach[J]. Transactions of the CSAE, 2010, 26(12): 182–187. doi: 10.3969/j.issn.1002-6819.2010.12.031
|
[23] |
刘帅, 朱永利, 张科, 等. 基于误差修正ARMA-GARCH模型的短期风电功率预测[J]. 太阳能学报, 2020, 41(10): 268–275.
LIU Shuai, ZHU Yongli, ZHANG Ke, et al. Short-term wind power forecasting based on error correction ARMA-GARCH model[J]. Acta Energiae Solaris Sinica, 2020, 41(10): 268–275.
|
[24] |
YANG Mao, ZHANG Luobin, CUI Yang, et al. Investigating the wind power smoothing effect using set pair analysis[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1161–1172. doi: 10.1109/TSTE.2019.2920255
|
[25] |
杨茂, 陈郁林. 基于EMD分解和集对分析的风电功率实时预测[J]. 电工技术学报, 2016, 31(21): 86–93. doi: 10.19595/j.cnki.1000-6753.tces.2016.21.010
YANG Mao and CHEN Yulin. Real-time prediction for wind power based on EMD and set pair analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 86–93. doi: 10.19595/j.cnki.1000-6753.tces.2016.21.010
|
[26] |
李大中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200–205. doi: 10.19912/j.0254-0096.tynxb.2019-1464
LI Dazhong and LI Yingyu. Ultra-short-term wind power prediction based on deep learning and error correction[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 200–205. doi: 10.19912/j.0254-0096.tynxb.2019-1464
|