| Citation: | ZOU Xiangyu, HUANG Chongwen, XU Yongjun, YANG Zhaohui, CAO Yue. Secure Energy Efficiency in Communication Systems Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2245-2252. doi: 10.11999/JEIT211611 | 
 
	                | [1] | TAN Xin, SUN Zhi, JORNET J M, et al. Increasing indoor spectrum sharing capacity using smart reflect-array[C]. 2016 IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 2016. | 
| [2] | TAN Xin, SUN Zhi, KOUTSONIKOLAS D, et al. Enabling indoor mobile millimeter-wave networks based on smart reflect-arrays[C]. IEEE Conference on Computer Communications, Honolulu, USA, 2018. | 
| [3] | HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi:  10.1109/MWC.001.1900534 | 
| [4] | HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi:  10.1109/TWC.2019.2922609 | 
| [5] | HUM S V and PERRUISSEAU-CARRIER J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 183–198. doi:  10.1109/TAP.2013.2287296 | 
| [6] | FOO S. Liquid-crystal reconfigurable metasurface reflectors[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017. | 
| [7] | LIASKOS C, NIE Shuai, TSIOLIARIDOU A, et al. A new wireless communication paradigm through software-controlled metasurfaces[J]. IEEE Communications Magazine, 2018, 56(9): 162–169. doi:  10.1109/mcom.2018.1700659 | 
| [8] | WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi:  10.1109/MCOM.001.1900107 | 
| [9] | HUANG Chongwen, ZAPPONE A, DEBBAH M, et al. Achievable rate maximization by passive intelligent mirrors[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018. | 
| [10] | WU Qingqing and ZHANG Rui. Beamforming optimization for intelligent reflecting surface with discrete phase shifts[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019. | 
| [11] | HUANG Chongwen, ALEXANDROPOULOS G C, ZAPPONE A, et al. Energy efficient multi-user MISO communication using low resolution large intelligent surfaces[C]. 2018 IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, 2018. | 
| [12] | KHAN S, KHAN K S, and SHIN S Y. Symbol denoising in high order M-QAM using residual learning of deep CNN[C]. The 2019 16th IEEE Annual Consumer Communications & Networking Conference, Las Vegas, USA, 2019. | 
| [13] | KHAN S and SHIN S Y. Deep learning aided transmit power estimation in mobile communication system[J]. IEEE Communications Letters, 2019, 23(8): 1405–1408. doi:  10.1109/LCOMM.2019.2923625 | 
| [14] | HUANG Chongwen, ALEXANDROPOULOS G C, YUEN C, et al. Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces[C]. The 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications, Cannes, France, 2019. | 
| [15] | ALKHATEEB A. DeepMIMO: A generic deep learning dataset for millimeter wave and massive MIMO applications[C]. The Information Theory and Applications Workshop, San Diego, USA, 2019. | 
| [16] | WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018. | 
| [17] | SUBRT L and PECHAC P. Intelligent walls as autonomous parts of smart indoor environments[J]. IET Communications, 2012, 6(8): 1004–1010. doi:  10.1049/iet-com.2010.0544 | 
| [18] | RAPPAPORT T S, SUN Shu, MAYZUS R, et al. Millimeter wave mobile communications for 5g cellular: It will work![J]. IEEE Access, 2013, 1: 335–349. doi:  10.1109/ACCESS.2013.2260813 | 
| [19] | IEEE 802.11 ad standard draft d0.1[EB/OL]. www. ieee802. org/11/Reports/tgadupdate. htm, 2012. | 
| [20] | AKDENIZ M R, LIU Yuanpeng, SAMIMI M K, et al. Millimeter wave channel modeling and cellular capacity evaluation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1164–1179. doi:  10.1109/JSAC.2014.2328154 | 
| [21] | SAMIMI M K and RAPPAPORT T S. Ultra-wideband statistical channel model for non line of sight millimeter-wave urban channels[C]. 2014 IEEE Global Communications Conference, Austin, USA, 2014. | 
| [22] | SCHNITER P and SAYEED A. Channel estimation and precoder design for millimeter-wave communications: The sparse way[C]. The 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2014. | 
| [23] | BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74–80. doi:  10.1109/MCOM.2014.6736746 | 
| [24] | VA V, CHOI J, and HEATH R W. The impact of beamwidth on temporal channel variation in vehicular channels and its implications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 5014–5029. doi:  10.1109/TVT.2016.2622164 | 
| [25] | RUCK D W, ROGERS S K, KABRISKY M, et al. The multilayer perceptron as an approximation to a Bayes optimal discriminant function[J]. IEEE Transactions on Neural Networks, 1990, 1(4): 296–298. doi:  10.1109/72.80266 | 
| [26] | ALKHATEEB A, ALEX S, VARKEY P, et al. Deep learning coordinated beamforming for highly-mobile millimeter wave systems[J]. IEEE Access, 2018, 6: 37328–37348. doi:  10.1109/ACCESS.2018.2850226 | 
| [27] | JIANG Hao, RUAN Chengyao, ZHANG Zaichen, et al. A general wideband non-stationary stochastic channel model for intelligent reflecting surface-assisted MIMO communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 5314–5328. doi:  10.1109/TWC.2021.3066806 | 
| [28] | NI Wanli, LIU Yuanwei, YANG Zhaohui, et al. Federated learning in multi-RIS aided systems[J]. IEEE Internet of Things Journal. To be published. | 
| [29] | YANG Zhaohui, HU Ye, ZHANG Zhaoyang, et al. Reconfigurable intelligent surface based orbital angular momentum: Architecture, opportunities, and challenges[J]. IEEE Wireless Communications, 2021, 28(6): 132–137. doi:  10.1109/MWC.001.2100223 | 
| [30] | CHEN Xiao, SHI Jianfeng, YANG Zhaohui, et al. Low-complexity channel estimation for intelligent reflecting surface-enhanced massive MIMO[J]. IEEE Wireless Communications Letters, 2021, 10(5): 996–1000. doi:  10.1109/LWC.2021.3054004 | 
| [31] | XU Yongjun, GAO Zhengnian, WANG Zhengqiang, et al. RIS-enhanced WPCNs: Joint radio resource allocation and passive beamforming optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7980–7991. doi:  10.1109/TVT.2021.3096603 | 
| [32] | CHEN Mingzhe, YANG Zhaohui, SAAD W, et al. A joint learning and communications framework for federated learning over wireless networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 269–283. doi:  10.1109/TWC.2020.3024629 | 
| [33] | YANG Zhaohui, CHEN Mingzhe, SAAD W, et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1935–1949. doi:  10.1109/TWC.2020.3037554 | 
