Advanced Search
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
ZOU Xiangyu, HUANG Chongwen, XU Yongjun, YANG Zhaohui, CAO Yue. Secure Energy Efficiency in Communication Systems Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2245-2252. doi: 10.11999/JEIT211611
Citation: ZOU Xiangyu, HUANG Chongwen, XU Yongjun, YANG Zhaohui, CAO Yue. Secure Energy Efficiency in Communication Systems Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2245-2252. doi: 10.11999/JEIT211611

Secure Energy Efficiency in Communication Systems Based on Deep Learning

doi: 10.11999/JEIT211611
  • Received Date: 2021-12-30
  • Rev Recd Date: 2022-06-05
  • Available Online: 2022-06-07
  • Publish Date: 2022-07-25
  • The secure transmission for Reconfigurable Intelligent Surface (RIS) assisted wireless communication systems is investigated in this paper. In the studied model, one user connects to the access point via a RIS while an eavesdropper eavesdrops on the signal sent from the user to the access point. Therefore, it is necessary to design an appropriate RIS reflection vector to solve the eavesdropping problem. This problem is formulated as an optimization problem whose goal is to maximize the secure energy efficiency which is defined via jointly optimizing the RIS reflection reflector as well as the number of RIS elements, which results in a non-convex optimization problem that is intractable to solve by the traditional methods. To tackle this issue, a new algorithm by leveraging the advance of the emerging Deep Learning (DL) technique is proposed so as to find the near optimal RIS reflection vector and determine the near optimal number of RIS reflection elements. Simulation results show that the proposed method reaches 96% of the near optimal secure energy efficiency of the genie-aided algorithm.
  • loading
  • [1]
    TAN Xin, SUN Zhi, JORNET J M, et al. Increasing indoor spectrum sharing capacity using smart reflect-array[C]. 2016 IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 2016.
    [2]
    TAN Xin, SUN Zhi, KOUTSONIKOLAS D, et al. Enabling indoor mobile millimeter-wave networks based on smart reflect-arrays[C]. IEEE Conference on Computer Communications, Honolulu, USA, 2018.
    [3]
    HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534
    [4]
    HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [5]
    HUM S V and PERRUISSEAU-CARRIER J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 183–198. doi: 10.1109/TAP.2013.2287296
    [6]
    FOO S. Liquid-crystal reconfigurable metasurface reflectors[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017.
    [7]
    LIASKOS C, NIE Shuai, TSIOLIARIDOU A, et al. A new wireless communication paradigm through software-controlled metasurfaces[J]. IEEE Communications Magazine, 2018, 56(9): 162–169. doi: 10.1109/mcom.2018.1700659
    [8]
    WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [9]
    HUANG Chongwen, ZAPPONE A, DEBBAH M, et al. Achievable rate maximization by passive intelligent mirrors[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018.
    [10]
    WU Qingqing and ZHANG Rui. Beamforming optimization for intelligent reflecting surface with discrete phase shifts[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019.
    [11]
    HUANG Chongwen, ALEXANDROPOULOS G C, ZAPPONE A, et al. Energy efficient multi-user MISO communication using low resolution large intelligent surfaces[C]. 2018 IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, 2018.
    [12]
    KHAN S, KHAN K S, and SHIN S Y. Symbol denoising in high order M-QAM using residual learning of deep CNN[C]. The 2019 16th IEEE Annual Consumer Communications & Networking Conference, Las Vegas, USA, 2019.
    [13]
    KHAN S and SHIN S Y. Deep learning aided transmit power estimation in mobile communication system[J]. IEEE Communications Letters, 2019, 23(8): 1405–1408. doi: 10.1109/LCOMM.2019.2923625
    [14]
    HUANG Chongwen, ALEXANDROPOULOS G C, YUEN C, et al. Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces[C]. The 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications, Cannes, France, 2019.
    [15]
    ALKHATEEB A. DeepMIMO: A generic deep learning dataset for millimeter wave and massive MIMO applications[C]. The Information Theory and Applications Workshop, San Diego, USA, 2019.
    [16]
    WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018.
    [17]
    SUBRT L and PECHAC P. Intelligent walls as autonomous parts of smart indoor environments[J]. IET Communications, 2012, 6(8): 1004–1010. doi: 10.1049/iet-com.2010.0544
    [18]
    RAPPAPORT T S, SUN Shu, MAYZUS R, et al. Millimeter wave mobile communications for 5g cellular: It will work![J]. IEEE Access, 2013, 1: 335–349. doi: 10.1109/ACCESS.2013.2260813
    [19]
    IEEE 802.11 ad standard draft d0.1[EB/OL]. www. ieee802. org/11/Reports/tgadupdate. htm, 2012.
    [20]
    AKDENIZ M R, LIU Yuanpeng, SAMIMI M K, et al. Millimeter wave channel modeling and cellular capacity evaluation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1164–1179. doi: 10.1109/JSAC.2014.2328154
    [21]
    SAMIMI M K and RAPPAPORT T S. Ultra-wideband statistical channel model for non line of sight millimeter-wave urban channels[C]. 2014 IEEE Global Communications Conference, Austin, USA, 2014.
    [22]
    SCHNITER P and SAYEED A. Channel estimation and precoder design for millimeter-wave communications: The sparse way[C]. The 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2014.
    [23]
    BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74–80. doi: 10.1109/MCOM.2014.6736746
    [24]
    VA V, CHOI J, and HEATH R W. The impact of beamwidth on temporal channel variation in vehicular channels and its implications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 5014–5029. doi: 10.1109/TVT.2016.2622164
    [25]
    RUCK D W, ROGERS S K, KABRISKY M, et al. The multilayer perceptron as an approximation to a Bayes optimal discriminant function[J]. IEEE Transactions on Neural Networks, 1990, 1(4): 296–298. doi: 10.1109/72.80266
    [26]
    ALKHATEEB A, ALEX S, VARKEY P, et al. Deep learning coordinated beamforming for highly-mobile millimeter wave systems[J]. IEEE Access, 2018, 6: 37328–37348. doi: 10.1109/ACCESS.2018.2850226
    [27]
    JIANG Hao, RUAN Chengyao, ZHANG Zaichen, et al. A general wideband non-stationary stochastic channel model for intelligent reflecting surface-assisted MIMO communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 5314–5328. doi: 10.1109/TWC.2021.3066806
    [28]
    NI Wanli, LIU Yuanwei, YANG Zhaohui, et al. Federated learning in multi-RIS aided systems[J]. IEEE Internet of Things Journal. To be published.
    [29]
    YANG Zhaohui, HU Ye, ZHANG Zhaoyang, et al. Reconfigurable intelligent surface based orbital angular momentum: Architecture, opportunities, and challenges[J]. IEEE Wireless Communications, 2021, 28(6): 132–137. doi: 10.1109/MWC.001.2100223
    [30]
    CHEN Xiao, SHI Jianfeng, YANG Zhaohui, et al. Low-complexity channel estimation for intelligent reflecting surface-enhanced massive MIMO[J]. IEEE Wireless Communications Letters, 2021, 10(5): 996–1000. doi: 10.1109/LWC.2021.3054004
    [31]
    XU Yongjun, GAO Zhengnian, WANG Zhengqiang, et al. RIS-enhanced WPCNs: Joint radio resource allocation and passive beamforming optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7980–7991. doi: 10.1109/TVT.2021.3096603
    [32]
    CHEN Mingzhe, YANG Zhaohui, SAAD W, et al. A joint learning and communications framework for federated learning over wireless networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 269–283. doi: 10.1109/TWC.2020.3024629
    [33]
    YANG Zhaohui, CHEN Mingzhe, SAAD W, et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1935–1949. doi: 10.1109/TWC.2020.3037554
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (1054) PDF downloads(280) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return