Citation: | QI Donglian, HAN Yifeng, ZHOU Ziqiang, YAN Yunfeng. Review of Defect Detection Technology of Power Equipment Based on Video Images[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3709-3720. doi: 10.11999/JEIT211588 |
[1] |
国家能源局. 2019年11月全国电力安全生产情况[EB/OL]. http://www.nea.gov.cn/2019-12/27/c_138661484.htm, 2019.
Power Safety Supervision Department of National Energy Administration. National power safety production in November 2019[EB/OL]. http://www.nea.gov.cn/2019-12/27/c_138661484.htm, 2019.
|
[2] |
普洱市人民政府. 云南滇能泗南江水电开发有限公司泗南江水电站“5·29”较大爆燃事故调查报告[EB/OL]. http://www.pes.gov.cn/info/egovinfo/1001/xxgk_content/1028-/2020-1226001.htm, 2020.
Pu'er Municipal People's Government. 5.29 accident investigation report, 1029-/2020–1226001[EB/OL]. http://www.pes.gov.cn/info/egovinfo/1001/xxgk_content/1028-/2020-1226001.htm, 2020.
|
[3] |
安学民, 孙华东, 张晓涵, 等. 美国得州“2.15”停电事件分析及启示[J]. 中国电机工程学报, 2021, 41(10): 3407–3415. doi: 10.13334/j.0258-8013.pcsee.210498
AN Xuemin, SUN Huadong, ZHANG Xiaohan, et al. Analysis and lessons of Texas power outage event on February 15, 2021[J]. Proceedings of the CSEE, 2021, 41(10): 3407–3415. doi: 10.13334/j.0258-8013.pcsee.210498
|
[4] |
郭步阳. 试论人工智能技术在电力系统故障诊断中的应用[J]. 科技创新与应用, 2015(34): 206.
GUO Buyang. Application of artificial intelligence technology in power system fault detection[J]. Technology Innovation and Application, 2015(34): 206.
|
[5] |
MOTTALIB M, ROKONUZZAMAN M, HABIB T, et al. Fabric defect classification with geometric features using Bayesian classifier[C]. 2015 International Conference on Advances in Electrical Engineering, Dhaka, Bangladesh, 2015: 137–140.
|
[6] |
XIANG C, FAN X A, and LEE T H. Face recognition using recursive fisher linear discriminant[J]. IEEE Transactions on Image Processing, 2006, 15(8): 2097–2105. doi: 10.1109/TIP.2006.875225
|
[7] |
CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/BF00994018
|
[8] |
OPELT A, PINZ A, FUSSENEGGER M, et al. Generic object recognition with boosting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3): 416–431. doi: 10.1109/TPAMI.2006.54
|
[9] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
|
[10] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[11] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
|
[12] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
|
[13] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[14] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
|
[15] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
|
[16] |
HUANG Lichao, YANG Yi, DENG Yafeng, et al. DenseBox: Unifying landmark localization with end to end object detection[J]. arXiv: 1509.04874, 2015. doi: 10.48550/arXiv.1509.04874.
|
[17] |
LAW H and DENG Jia. CornerNet: Detecting objects as paired keypoints[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 765–781.
|
[18] |
ZHOU Xingyi, ZHUO Jiacheng, and KRÄHENBÜHL P. Bottom-up object detection by grouping extreme and center points[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 850–859.
|
[19] |
ZHU Chenchen, HE Yihui, and SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 840–849.
|
[20] |
TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9626–9635.
|
[21] |
KONG Tao, SUN Fuchun, LIU Huaping, et al. FoveaBox: Beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389–7398. doi: 10.1109/TIP.2020.3002345
|
[22] |
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
|
[23] |
KHAN J F, BHUIYAN S M A, and ADHAMI R R. Image segmentation and shape analysis for road-sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 83–96. doi: 10.1109/TITS.2010.2073466
|
[24] |
TREMEAU A and BOREL N. A region growing and merging algorithm to color segmentation[J]. Pattern Recognition, 1997, 30(7): 1191–1203. doi: 10.1016/S0031-3203(96)00147-1
|
[25] |
黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报:理学版, 2020, 66(6): 519–531.
HUANG Peng, ZHENG Qi, and LIANG Chao. Overview of image segmentation methods[J]. Journal of Wuhan University:Natural Science Edition, 2020, 66(6): 519–531.
|
[26] |
周挺. 基于Graph Cuts的双目图像目标分割方法研究[D]. [硕士论文], 西安理工大学, 2020.
ZHOU Ting. Research on binocular image object segmentation method based on graph cuts[D]. [Master dissertation], Xi’an University of Technology, 2020.
|
[27] |
FARABET C, COUPRIE C, NAJMAN L, et al. Scene parsing with multiscale feature learning, purity trees, and optimal covers[C]. The 29th International Conference on Machine Learning, Edinburgh, UK, 2012.
|
[28] |
PINHEIRO P and COLLOBERT R. Recurrent convolutional neural networks for scene labeling[C]. The 31st International Conference on Machine Learning, Beijing, China, 2014: 82–90.
|
[29] |
LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440.
|
[30] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
|
[31] |
石延辉, 罗毅, 涂光瑜, 等. 一种适用于隔离开关的边缘提取算法[J]. 继电器, 2007, 35(12): 23–26. doi: 10.3969/j.issn.1674-3415.2007.12.006
SHI Yanhui, LUO Yi, TU Guangyu, et al. An edge detectable algorithm for high-voltage isolating switch[J]. Power System Protection and Control, 2007, 35(12): 23–26. doi: 10.3969/j.issn.1674-3415.2007.12.006
|
[32] |
陈安伟, 乐全明, 张宗益, 等. 基于机器人的变电站开关状态图像识别方法[J]. 电力系统自动化, 2012, 36(6): 101–105. doi: 10.7500/AEPS201107176
CHEN Anwei, YUE Quanming, ZHANG Zongyi, et al. An image recognition method of substation breakers state based on robot[J]. Automation of Electric Power Systems, 2012, 36(6): 101–105. doi: 10.7500/AEPS201107176
|
[33] |
邵剑雄, 闫云凤, 齐冬莲. 基于霍夫森林的变电站开关设备检测及状态识别[J]. 电力系统自动化, 2016, 40(11): 115–120. doi: 10.7500/AEPS20150524001
SHAO Jianxiong, YAN Yunfeng, and QI Donglian. Substation switch detection and state recognition based on Hough forests[J]. Automation of Electric Power Systems, 2016, 40(11): 115–120. doi: 10.7500/AEPS20150524001
|
[34] |
郭威, 赵晓鹏. 输电线路中缺失绝缘子的检测与定位[J]. 太原科技大学学报, 2021, 42(2): 116–122. doi: 10.3969/j.issn.1673-2057.2021.02.006
GUO Wei and ZHAO Xiaopeng. Detection and location of missing insulators in transmission lines[J]. Journal of Taiyuan University of Science and Technology, 2021, 42(2): 116–122. doi: 10.3969/j.issn.1673-2057.2021.02.006
|
[35] |
李浩然, 高健, 吴田, 等. 基于改进Canny算子的绝缘子裂纹检测研究[J]. 智慧电力, 2021, 49(2): 91–98. doi: 10.3969/j.issn.1673-7598.2021.02.015
LI Haoran, GAO Jian, WU Tian, et al. Crack detection method of insulators based on improved canny operator[J]. Smart Power, 2021, 49(2): 91–98. doi: 10.3969/j.issn.1673-7598.2021.02.015
|
[36] |
严宇, 邹德华, 江维, 等. 基于HOUGH变换的特高压立式绝缘子视觉检测方法研究[J]. 电力科学与工程, 2020, 36(10): 42–47. doi: 10.3969/j.ISSN.1672-0792.2020.10.007
YAN Yu, ZOU Dehua, JIANG Wei, et al. Research on visual detection method of UHV vertical insulator based on HOUGH transform[J]. Electric Power Science and Engineering, 2020, 36(10): 42–47. doi: 10.3969/j.ISSN.1672-0792.2020.10.007
|
[37] |
邢浩强, 杜志岐, 苏波. 变电站指针式仪表检测与识别方法[J]. 仪器仪表学报, 2017, 38(11): 2813–2821. doi: 10.3969/j.issn.0254-3087.2017.11.024
XING Haoqiang, DU Zhiqi, and SU Bo. Detection and recognition method for pointer-type meter in transformer substation[J]. Chinese Journal of Scientific Instrument, 2017, 38(11): 2813–2821. doi: 10.3969/j.issn.0254-3087.2017.11.024
|
[38] |
房桦, 明志强, 周云峰, 等. 一种适用于变电站巡检机器人的仪表识别算法[J]. 自动化与仪表, 2013, 28(5): 10–14. doi: 10.3969/j.issn.1001-9944.2013.05.003
FANG Hua, MING Zhiqiang, ZHOU Yunfeng, et al. Meter recognition algorithm for equipment inspection robot[J]. Automation &Instrumentation, 2013, 28(5): 10–14. doi: 10.3969/j.issn.1001-9944.2013.05.003
|
[39] |
向友君, 江文, 阮荣钜. 基于刻度准确定位的指针式仪表示数识别方法[J]. 华南理工大学学报:自然科学版, 2020, 48(10): 129–135.
XIANG Youjun, JIANG Wen, and RUAN Rongju. Reading recognition method of pointer-type meter based on accurate scale localization[J]. Journal of South China University of Technology:Natural Science Edition, 2020, 48(10): 129–135.
|
[40] |
冯敏, 罗旺, 余磊, 等. 适用于无人机巡检图像的输电线路螺栓检测方法[J]. 电力科学与技术学报, 2018, 33(4): 135–140. doi: 10.3969/j.issn.1673-9140.2018.04.019
FENG Min, LUO Wang, YU Lei, et al. A bolt detection method for pictures captured from an unmanned aerial vehicle in power transmission line inspection[J]. Journal of Electric Power Science and Technology, 2018, 33(4): 135–140. doi: 10.3969/j.issn.1673-9140.2018.04.019
|
[41] |
孙启悦, 王龙. 基于超像素图像分割的变电设备故障诊断研究[J]. 浙江电力, 2017, 36(12): 86–89. doi: 10.19585/j.zjdl.201712017
SUN Qiyue and WANG Long. Study on substation equipment fault diagnosis based on super-pixel segmentation[J]. Zhejiang Electric Power, 2017, 36(12): 86–89. doi: 10.19585/j.zjdl.201712017
|
[42] |
杨洋. 电气设备红外图像分析与处理[D]. [硕士论文], 北京交通大学, 2015.
YANG Yang. Infrared image analysis and processing of power equipments[D]. [Master dissertation], Beijing Jiaotong University, 2015.
|
[43] |
郭文诚, 崔昊杨, 马宏伟, 等. 基于Zernike矩特征的电力设备红外图像目标识别[J]. 激光与红外, 2019, 49(4): 503–506. doi: 10.3969/j.issn.1001-5078.2019.04.020
GUO Wencheng, CUI Haoyang, MA Hongwei, et al. Infrared image target recognition of power equipment based on Zernike moment[J]. Laser &Infrared, 2019, 49(4): 503–506. doi: 10.3969/j.issn.1001-5078.2019.04.020
|
[44] |
冯振新, 周东国, 江翼, 等. 基于改进MSER算法的电力设备红外故障区域提取方法[J]. 电力系统保护与控制, 2019, 47(5): 123–128. doi: 10.7667/PSPC180363
FENG Zhenxin, ZHOU Dongguo, JIANG Yi, et al. Fault region extraction using improved MSER algorithm with application to the electrical system[J]. Power System Protection and Control, 2019, 47(5): 123–128. doi: 10.7667/PSPC180363
|
[45] |
刘子英, 张靖, 邓芳明. 基于BP神经网络的高压隔离开关分合闸监测识别[J]. 电力系统保护与控制, 2020, 48(5): 134–140. doi: 10.19783/j.cnki.pspc.190524
LIU Ziying, ZHANG Jing, and DENG Fangming. Monitoring and identification of state of opening or closing isolation switch based on BP neural network[J]. Power System Protection and Control, 2020, 48(5): 134–140. doi: 10.19783/j.cnki.pspc.190524
|
[46] |
王舶仲, 蒋毅舟, 文超, 等. 基于生成对抗网络的隔离开关分合位置判别方法研究及应用[J]. 智慧电力, 2019, 47(10): 77–84. doi: 10.3969/j.issn.1673-7598.2019.10.012
WANG Bozhong, JIANG Yizhou, WEN Chao, et al. Method for breaking-closing position discrimination of isolation switch based on generative adversarial network and its application[J]. Smart Power, 2019, 47(10): 77–84. doi: 10.3969/j.issn.1673-7598.2019.10.012
|
[47] |
张一茗, 李少华, 陈士刚, 等. 基于ReliefF特征量优化及BP神经网络识别的高压隔离开关故障类型与位置诊断方法[J]. 高压电器, 2018, 54(2): 12–19. doi: 10.13296/j.1001-1609.hva.2018.02.003
ZHANG Yiming, LI Shaohua, CHEN Shigang, et al. Fault type and position diagnosis method of high-voltage disconnectors based on reliefF characteristic quantity optimization and BP neural network recognition[J]. High Voltage Apparatus, 2018, 54(2): 12–19. doi: 10.13296/j.1001-1609.hva.2018.02.003
|
[48] |
唐小煜, 黄进波, 冯洁文, 等. 基于U-net和YOLOv4的绝缘子图像分割与缺陷检测[J]. 华南师范大学学报:自然科学版, 2020, 52(6): 15–21. doi: 10.6054/j.jscnun.2020088
TANG Xiaoyu, HUANG Jinbo, FENG Jiewen, et al. Image segmentation and defect detection of insulators based on U-net and YOLOv4[J]. Journal of South China Normal University:Natural Science Edition, 2020, 52(6): 15–21. doi: 10.6054/j.jscnun.2020088
|
[49] |
朱明州, 赵曙光, 王建强. 基于改进Faster R-CNN的绝缘子检测方法研究[J]. 科技风, 2021(15): 99–100. doi: 10.19392/j.cnki.1671-7341.202115042
ZHU Mingzhou, ZHAO Shuguang, and WANG Jianqiang. Research on insulator detection method based on improved faster R-CNN[J]. Technology Wind, 2021(15): 99–100. doi: 10.19392/j.cnki.1671-7341.202115042
|
[50] |
王道累, 孙嘉珺, 张天宇, 等. 基于改进生成对抗网络的玻璃绝缘子自爆缺陷检测方法[J]. 高电压技术, 2022, 48(3): 1096–1103. doi: 10.13336/j.1003-6520.hve.20210236
WANG Daolei, SUN Jiajun, ZHANG Tianyu, et al. Self-explosion defect detection method of glass insulator based on improved generative adversarial network[J]. High Voltage Engineering, 2022, 48(3): 1096–1103. doi: 10.13336/j.1003-6520.hve.20210236
|
[51] |
徐发兵, 吴怀宇, 陈志环, 等. 基于深度学习的指针式仪表检测与识别研究[J]. 高技术通讯, 2019, 29(12): 1206–1215. doi: 10.3772/j.issn.1002-0470.2019.12.006
XU Fabing, WU Huaiyu, CHEN Zhihuan, et al. Research on pointer instrument detection and recognition based on deep learning[J]. Chinese High Technology Letters, 2019, 29(12): 1206–1215. doi: 10.3772/j.issn.1002-0470.2019.12.006
|
[52] |
万吉林, 王慧芳, 管敏渊, 等. 基于Faster R-CNN和U-Net的变电站指针式仪表读数自动识别方法[J]. 电网技术, 2020, 44(8): 3097–3105. doi: 10.13335/j.1000-3673.pst.2019.1670
WAN Jilin, WANG Huifang, GUAN Minyuan, et al. An automatic identification for reading of substation pointer-type meters using faster R-CNN and U-Net[J]. Power System Technology, 2020, 44(8): 3097–3105. doi: 10.13335/j.1000-3673.pst.2019.1670
|
[53] |
张永翔, 吴功平, 刘中云, 等. 基于YOLOv3网络的输电线路防震锤和线夹检测迁移学习[J]. 计算机应用, 2020, 40(S2): 188–194.
ZHANG Yongxiang, WU Gongping, LIU Zhongyun, et al. Transfer learning of transmission line damper and clamp detection based on YOLOv3 network[J]. Journal of Computer Applications, 2020, 40(S2): 188–194.
|
[54] |
阮国恒, 李文航. 基于视频联动技术的输电线路远程智能巡检方法[J]. 自动化与仪器仪表, 2021(1): 77–80,84. doi: 10.14016/j.cnki.1001-9227.2021.01.077
RUAN Guoheng and LI Wenhang. Remote intelligent inspection method of transmission line based on video linkage technology[J]. Automation &Instrumentation, 2021(1): 77–80,84. doi: 10.14016/j.cnki.1001-9227.2021.01.077
|
[55] |
吴锡, 王梓屹, 宋柯, 等. 基于Faster RCNN检测器的输电线路无人机自主巡检系统[J]. 电力信息与通信技术, 2020, 18(9): 8–15.
WU Xi, WANG Ziyi, SONG Ke, et al. The autonomous inspection system of transmission line UAV based on Faster RCNN detector[J]. Electric Power Information and Communication Technology, 2020, 18(9): 8–15.
|
[56] |
刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019, 13(2): 27–33. doi: 10.13648/j.cnki.issn1674-0629.2019.02.005
LIU Yunpeng, PEI Shaotong, WU Jianhua, et al. Deep learning based target detection method for abnormal hot spots infrared images of transmission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27–33. doi: 10.13648/j.cnki.issn1674-0629.2019.02.005
|
[57] |
李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79–84. doi: 10.13648/j.cnki.issn1674-0629.2019.12.012
LI Wenpu, XIE Ke, LIAO Xiao, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved Faster RCNN[J]. Southern Power System Technology, 2019, 13(12): 79–84. doi: 10.13648/j.cnki.issn1674-0629.2019.12.012
|
[58] |
Customvision website. https://www.customvision.ai.
|
[59] |
BISONG E. Google AutoML: Cloud vision[M]. BISONG E. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Berkeley: Apress, 2019: 581–598.
|
[60] |
CHEN Yuntao, HAN Chenxia, LI Yanghao, et al. SimpleDet: A simple and versatile distributed framework for object detection and instance recognition[J]. Journal of Machine Learning Research, 2019, 20(156): 1–8.
|
[61] |
WU Yuxin, KIRILLOV A, MASSA F, et al. Detectron2[EB/OL]. https://github.com/facebookresearch/detectron2, 2019.
|
[62] |
CHEN Kai, WANG Jiaqi, PANG Jiangmiao, et al. MMDetection: Open MMLab detection toolbox and benchmark[J]. arXiv: 1906.07155, 2019.
|
[63] |
MA Yanjun, YU Dianhai, WU Tian, et al. PaddlePaddle: An open-source deep learning platform from industrial practice[J]. Frontiers of Data and Computing, 2019, 1(1): 105–115. doi: 10.11871/jfdc.issn.2096.742X.2019.01.011
|
[64] |
HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
|
[65] |
CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154–6162.
|
[66] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007.
|
[67] |
HINTON G, VINYALS O, and DEAN J. Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14(7): 38–39.
|
[68] |
王勋, 王新, 魏举锋. 智能巡检系统在电力行业中的应用研究[J]. 四川水力发电, 2021, 40(1): 109–112. doi: 10.3969/j.issn.1001-2184.2021.01.025
WANG Xun, WANG Xin, and WEI Jufeng. Application of intelligent inspection system in electrical power industry[J]. Sichuan Water Power, 2021, 40(1): 109–112. doi: 10.3969/j.issn.1001-2184.2021.01.025
|
[69] |
严太山, 郑晓琼, 吕雪峰, 等. 变电站自动巡检管控系统研究与应用[J]. 农村电气化, 2021(3): 41–44. doi: 10.13882/j.cnki.ncdqh.2021.03.014
YAN Taishan, ZHENG Xiaoqiong, LV Xuefeng, et al. Research and application of automatic patrol check, management control system in substations[J]. Rural Electrification, 2021(3): 41–44. doi: 10.13882/j.cnki.ncdqh.2021.03.014
|
[70] |
张海华, 陈昊, 许驰, 等. 变电站立体智能巡检新技术研究与应用[J]. 湖北电力, 2021, 45(1): 41–46. doi: 10.19308/j.hep.2021.01.007
ZHANG Haihua, CHEN Hao, XU Chi, et al. Research and application of new technology of three-dimensional intelligent inspection for substations[J]. Hubei Electric Power, 2021, 45(1): 41–46. doi: 10.19308/j.hep.2021.01.007
|