Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
QI Donglian, HAN Yifeng, ZHOU Ziqiang, YAN Yunfeng. Review of Defect Detection Technology of Power Equipment Based on Video Images[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3709-3720. doi: 10.11999/JEIT211588
Citation: QI Donglian, HAN Yifeng, ZHOU Ziqiang, YAN Yunfeng. Review of Defect Detection Technology of Power Equipment Based on Video Images[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3709-3720. doi: 10.11999/JEIT211588

Review of Defect Detection Technology of Power Equipment Based on Video Images

doi: 10.11999/JEIT211588
Funds:  Science and Technology Project of State Grid Corporation of China(5200-201919048A-0-0-00)
  • Received Date: 2021-12-29
  • Accepted Date: 2022-06-08
  • Rev Recd Date: 2022-05-12
  • Available Online: 2022-06-10
  • Publish Date: 2022-11-14
  • The defect detection technology of power equipment based on video image is one of the key technologies to realize intelligent operation and maintenance. It can solve the problems of intelligent identification of external defects in automatic fault diagnosis, active warning and online maintenance of power equipment. Moreover, it is able to reduce the waste of human resources and greatly improve the reliability of system operation and maintenance, thus making up for the shortcomings of traditional protection maintenance mode and providing technical support for the stable operation of power grid. This paper summarizes current typical defect detection algorithms and image processing technology of transmission and transformation equipment based on video images. Additionally, it analyzes the advantages and disadvantages of traditional image processing methods and deep learning methods in the field of power equipment defect detection. Finally, current algorithm development platforms are summarized, and the future development is predicted.
  • loading
  • [1]
    国家能源局. 2019年11月全国电力安全生产情况[EB/OL]. http://www.nea.gov.cn/2019-12/27/c_138661484.htm, 2019.

    Power Safety Supervision Department of National Energy Administration. National power safety production in November 2019[EB/OL]. http://www.nea.gov.cn/2019-12/27/c_138661484.htm, 2019.
    [2]
    普洱市人民政府. 云南滇能泗南江水电开发有限公司泗南江水电站“5·29”较大爆燃事故调查报告[EB/OL]. http://www.pes.gov.cn/info/egovinfo/1001/xxgk_content/1028-/2020-1226001.htm, 2020.

    Pu'er Municipal People's Government. 5.29 accident investigation report, 1029-/2020–1226001[EB/OL]. http://www.pes.gov.cn/info/egovinfo/1001/xxgk_content/1028-/2020-1226001.htm, 2020.
    [3]
    安学民, 孙华东, 张晓涵, 等. 美国得州“2.15”停电事件分析及启示[J]. 中国电机工程学报, 2021, 41(10): 3407–3415. doi: 10.13334/j.0258-8013.pcsee.210498

    AN Xuemin, SUN Huadong, ZHANG Xiaohan, et al. Analysis and lessons of Texas power outage event on February 15, 2021[J]. Proceedings of the CSEE, 2021, 41(10): 3407–3415. doi: 10.13334/j.0258-8013.pcsee.210498
    [4]
    郭步阳. 试论人工智能技术在电力系统故障诊断中的应用[J]. 科技创新与应用, 2015(34): 206.

    GUO Buyang. Application of artificial intelligence technology in power system fault detection[J]. Technology Innovation and Application, 2015(34): 206.
    [5]
    MOTTALIB M, ROKONUZZAMAN M, HABIB T, et al. Fabric defect classification with geometric features using Bayesian classifier[C]. 2015 International Conference on Advances in Electrical Engineering, Dhaka, Bangladesh, 2015: 137–140.
    [6]
    XIANG C, FAN X A, and LEE T H. Face recognition using recursive fisher linear discriminant[J]. IEEE Transactions on Image Processing, 2006, 15(8): 2097–2105. doi: 10.1109/TIP.2006.875225
    [7]
    CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/BF00994018
    [8]
    OPELT A, PINZ A, FUSSENEGGER M, et al. Generic object recognition with boosting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3): 416–431. doi: 10.1109/TPAMI.2006.54
    [9]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
    [10]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [11]
    HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
    [12]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [13]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [14]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [15]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [16]
    HUANG Lichao, YANG Yi, DENG Yafeng, et al. DenseBox: Unifying landmark localization with end to end object detection[J]. arXiv: 1509.04874, 2015. doi: 10.48550/arXiv.1509.04874.
    [17]
    LAW H and DENG Jia. CornerNet: Detecting objects as paired keypoints[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 765–781.
    [18]
    ZHOU Xingyi, ZHUO Jiacheng, and KRÄHENBÜHL P. Bottom-up object detection by grouping extreme and center points[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 850–859.
    [19]
    ZHU Chenchen, HE Yihui, and SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 840–849.
    [20]
    TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9626–9635.
    [21]
    KONG Tao, SUN Fuchun, LIU Huaping, et al. FoveaBox: Beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389–7398. doi: 10.1109/TIP.2020.3002345
    [22]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
    [23]
    KHAN J F, BHUIYAN S M A, and ADHAMI R R. Image segmentation and shape analysis for road-sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 83–96. doi: 10.1109/TITS.2010.2073466
    [24]
    TREMEAU A and BOREL N. A region growing and merging algorithm to color segmentation[J]. Pattern Recognition, 1997, 30(7): 1191–1203. doi: 10.1016/S0031-3203(96)00147-1
    [25]
    黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报:理学版, 2020, 66(6): 519–531.

    HUANG Peng, ZHENG Qi, and LIANG Chao. Overview of image segmentation methods[J]. Journal of Wuhan University:Natural Science Edition, 2020, 66(6): 519–531.
    [26]
    周挺. 基于Graph Cuts的双目图像目标分割方法研究[D]. [硕士论文], 西安理工大学, 2020.

    ZHOU Ting. Research on binocular image object segmentation method based on graph cuts[D]. [Master dissertation], Xi’an University of Technology, 2020.
    [27]
    FARABET C, COUPRIE C, NAJMAN L, et al. Scene parsing with multiscale feature learning, purity trees, and optimal covers[C]. The 29th International Conference on Machine Learning, Edinburgh, UK, 2012.
    [28]
    PINHEIRO P and COLLOBERT R. Recurrent convolutional neural networks for scene labeling[C]. The 31st International Conference on Machine Learning, Beijing, China, 2014: 82–90.
    [29]
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440.
    [30]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
    [31]
    石延辉, 罗毅, 涂光瑜, 等. 一种适用于隔离开关的边缘提取算法[J]. 继电器, 2007, 35(12): 23–26. doi: 10.3969/j.issn.1674-3415.2007.12.006

    SHI Yanhui, LUO Yi, TU Guangyu, et al. An edge detectable algorithm for high-voltage isolating switch[J]. Power System Protection and Control, 2007, 35(12): 23–26. doi: 10.3969/j.issn.1674-3415.2007.12.006
    [32]
    陈安伟, 乐全明, 张宗益, 等. 基于机器人的变电站开关状态图像识别方法[J]. 电力系统自动化, 2012, 36(6): 101–105. doi: 10.7500/AEPS201107176

    CHEN Anwei, YUE Quanming, ZHANG Zongyi, et al. An image recognition method of substation breakers state based on robot[J]. Automation of Electric Power Systems, 2012, 36(6): 101–105. doi: 10.7500/AEPS201107176
    [33]
    邵剑雄, 闫云凤, 齐冬莲. 基于霍夫森林的变电站开关设备检测及状态识别[J]. 电力系统自动化, 2016, 40(11): 115–120. doi: 10.7500/AEPS20150524001

    SHAO Jianxiong, YAN Yunfeng, and QI Donglian. Substation switch detection and state recognition based on Hough forests[J]. Automation of Electric Power Systems, 2016, 40(11): 115–120. doi: 10.7500/AEPS20150524001
    [34]
    郭威, 赵晓鹏. 输电线路中缺失绝缘子的检测与定位[J]. 太原科技大学学报, 2021, 42(2): 116–122. doi: 10.3969/j.issn.1673-2057.2021.02.006

    GUO Wei and ZHAO Xiaopeng. Detection and location of missing insulators in transmission lines[J]. Journal of Taiyuan University of Science and Technology, 2021, 42(2): 116–122. doi: 10.3969/j.issn.1673-2057.2021.02.006
    [35]
    李浩然, 高健, 吴田, 等. 基于改进Canny算子的绝缘子裂纹检测研究[J]. 智慧电力, 2021, 49(2): 91–98. doi: 10.3969/j.issn.1673-7598.2021.02.015

    LI Haoran, GAO Jian, WU Tian, et al. Crack detection method of insulators based on improved canny operator[J]. Smart Power, 2021, 49(2): 91–98. doi: 10.3969/j.issn.1673-7598.2021.02.015
    [36]
    严宇, 邹德华, 江维, 等. 基于HOUGH变换的特高压立式绝缘子视觉检测方法研究[J]. 电力科学与工程, 2020, 36(10): 42–47. doi: 10.3969/j.ISSN.1672-0792.2020.10.007

    YAN Yu, ZOU Dehua, JIANG Wei, et al. Research on visual detection method of UHV vertical insulator based on HOUGH transform[J]. Electric Power Science and Engineering, 2020, 36(10): 42–47. doi: 10.3969/j.ISSN.1672-0792.2020.10.007
    [37]
    邢浩强, 杜志岐, 苏波. 变电站指针式仪表检测与识别方法[J]. 仪器仪表学报, 2017, 38(11): 2813–2821. doi: 10.3969/j.issn.0254-3087.2017.11.024

    XING Haoqiang, DU Zhiqi, and SU Bo. Detection and recognition method for pointer-type meter in transformer substation[J]. Chinese Journal of Scientific Instrument, 2017, 38(11): 2813–2821. doi: 10.3969/j.issn.0254-3087.2017.11.024
    [38]
    房桦, 明志强, 周云峰, 等. 一种适用于变电站巡检机器人的仪表识别算法[J]. 自动化与仪表, 2013, 28(5): 10–14. doi: 10.3969/j.issn.1001-9944.2013.05.003

    FANG Hua, MING Zhiqiang, ZHOU Yunfeng, et al. Meter recognition algorithm for equipment inspection robot[J]. Automation &Instrumentation, 2013, 28(5): 10–14. doi: 10.3969/j.issn.1001-9944.2013.05.003
    [39]
    向友君, 江文, 阮荣钜. 基于刻度准确定位的指针式仪表示数识别方法[J]. 华南理工大学学报:自然科学版, 2020, 48(10): 129–135.

    XIANG Youjun, JIANG Wen, and RUAN Rongju. Reading recognition method of pointer-type meter based on accurate scale localization[J]. Journal of South China University of Technology:Natural Science Edition, 2020, 48(10): 129–135.
    [40]
    冯敏, 罗旺, 余磊, 等. 适用于无人机巡检图像的输电线路螺栓检测方法[J]. 电力科学与技术学报, 2018, 33(4): 135–140. doi: 10.3969/j.issn.1673-9140.2018.04.019

    FENG Min, LUO Wang, YU Lei, et al. A bolt detection method for pictures captured from an unmanned aerial vehicle in power transmission line inspection[J]. Journal of Electric Power Science and Technology, 2018, 33(4): 135–140. doi: 10.3969/j.issn.1673-9140.2018.04.019
    [41]
    孙启悦, 王龙. 基于超像素图像分割的变电设备故障诊断研究[J]. 浙江电力, 2017, 36(12): 86–89. doi: 10.19585/j.zjdl.201712017

    SUN Qiyue and WANG Long. Study on substation equipment fault diagnosis based on super-pixel segmentation[J]. Zhejiang Electric Power, 2017, 36(12): 86–89. doi: 10.19585/j.zjdl.201712017
    [42]
    杨洋. 电气设备红外图像分析与处理[D]. [硕士论文], 北京交通大学, 2015.

    YANG Yang. Infrared image analysis and processing of power equipments[D]. [Master dissertation], Beijing Jiaotong University, 2015.
    [43]
    郭文诚, 崔昊杨, 马宏伟, 等. 基于Zernike矩特征的电力设备红外图像目标识别[J]. 激光与红外, 2019, 49(4): 503–506. doi: 10.3969/j.issn.1001-5078.2019.04.020

    GUO Wencheng, CUI Haoyang, MA Hongwei, et al. Infrared image target recognition of power equipment based on Zernike moment[J]. Laser &Infrared, 2019, 49(4): 503–506. doi: 10.3969/j.issn.1001-5078.2019.04.020
    [44]
    冯振新, 周东国, 江翼, 等. 基于改进MSER算法的电力设备红外故障区域提取方法[J]. 电力系统保护与控制, 2019, 47(5): 123–128. doi: 10.7667/PSPC180363

    FENG Zhenxin, ZHOU Dongguo, JIANG Yi, et al. Fault region extraction using improved MSER algorithm with application to the electrical system[J]. Power System Protection and Control, 2019, 47(5): 123–128. doi: 10.7667/PSPC180363
    [45]
    刘子英, 张靖, 邓芳明. 基于BP神经网络的高压隔离开关分合闸监测识别[J]. 电力系统保护与控制, 2020, 48(5): 134–140. doi: 10.19783/j.cnki.pspc.190524

    LIU Ziying, ZHANG Jing, and DENG Fangming. Monitoring and identification of state of opening or closing isolation switch based on BP neural network[J]. Power System Protection and Control, 2020, 48(5): 134–140. doi: 10.19783/j.cnki.pspc.190524
    [46]
    王舶仲, 蒋毅舟, 文超, 等. 基于生成对抗网络的隔离开关分合位置判别方法研究及应用[J]. 智慧电力, 2019, 47(10): 77–84. doi: 10.3969/j.issn.1673-7598.2019.10.012

    WANG Bozhong, JIANG Yizhou, WEN Chao, et al. Method for breaking-closing position discrimination of isolation switch based on generative adversarial network and its application[J]. Smart Power, 2019, 47(10): 77–84. doi: 10.3969/j.issn.1673-7598.2019.10.012
    [47]
    张一茗, 李少华, 陈士刚, 等. 基于ReliefF特征量优化及BP神经网络识别的高压隔离开关故障类型与位置诊断方法[J]. 高压电器, 2018, 54(2): 12–19. doi: 10.13296/j.1001-1609.hva.2018.02.003

    ZHANG Yiming, LI Shaohua, CHEN Shigang, et al. Fault type and position diagnosis method of high-voltage disconnectors based on reliefF characteristic quantity optimization and BP neural network recognition[J]. High Voltage Apparatus, 2018, 54(2): 12–19. doi: 10.13296/j.1001-1609.hva.2018.02.003
    [48]
    唐小煜, 黄进波, 冯洁文, 等. 基于U-net和YOLOv4的绝缘子图像分割与缺陷检测[J]. 华南师范大学学报:自然科学版, 2020, 52(6): 15–21. doi: 10.6054/j.jscnun.2020088

    TANG Xiaoyu, HUANG Jinbo, FENG Jiewen, et al. Image segmentation and defect detection of insulators based on U-net and YOLOv4[J]. Journal of South China Normal University:Natural Science Edition, 2020, 52(6): 15–21. doi: 10.6054/j.jscnun.2020088
    [49]
    朱明州, 赵曙光, 王建强. 基于改进Faster R-CNN的绝缘子检测方法研究[J]. 科技风, 2021(15): 99–100. doi: 10.19392/j.cnki.1671-7341.202115042

    ZHU Mingzhou, ZHAO Shuguang, and WANG Jianqiang. Research on insulator detection method based on improved faster R-CNN[J]. Technology Wind, 2021(15): 99–100. doi: 10.19392/j.cnki.1671-7341.202115042
    [50]
    王道累, 孙嘉珺, 张天宇, 等. 基于改进生成对抗网络的玻璃绝缘子自爆缺陷检测方法[J]. 高电压技术, 2022, 48(3): 1096–1103. doi: 10.13336/j.1003-6520.hve.20210236

    WANG Daolei, SUN Jiajun, ZHANG Tianyu, et al. Self-explosion defect detection method of glass insulator based on improved generative adversarial network[J]. High Voltage Engineering, 2022, 48(3): 1096–1103. doi: 10.13336/j.1003-6520.hve.20210236
    [51]
    徐发兵, 吴怀宇, 陈志环, 等. 基于深度学习的指针式仪表检测与识别研究[J]. 高技术通讯, 2019, 29(12): 1206–1215. doi: 10.3772/j.issn.1002-0470.2019.12.006

    XU Fabing, WU Huaiyu, CHEN Zhihuan, et al. Research on pointer instrument detection and recognition based on deep learning[J]. Chinese High Technology Letters, 2019, 29(12): 1206–1215. doi: 10.3772/j.issn.1002-0470.2019.12.006
    [52]
    万吉林, 王慧芳, 管敏渊, 等. 基于Faster R-CNN和U-Net的变电站指针式仪表读数自动识别方法[J]. 电网技术, 2020, 44(8): 3097–3105. doi: 10.13335/j.1000-3673.pst.2019.1670

    WAN Jilin, WANG Huifang, GUAN Minyuan, et al. An automatic identification for reading of substation pointer-type meters using faster R-CNN and U-Net[J]. Power System Technology, 2020, 44(8): 3097–3105. doi: 10.13335/j.1000-3673.pst.2019.1670
    [53]
    张永翔, 吴功平, 刘中云, 等. 基于YOLOv3网络的输电线路防震锤和线夹检测迁移学习[J]. 计算机应用, 2020, 40(S2): 188–194.

    ZHANG Yongxiang, WU Gongping, LIU Zhongyun, et al. Transfer learning of transmission line damper and clamp detection based on YOLOv3 network[J]. Journal of Computer Applications, 2020, 40(S2): 188–194.
    [54]
    阮国恒, 李文航. 基于视频联动技术的输电线路远程智能巡检方法[J]. 自动化与仪器仪表, 2021(1): 77–80,84. doi: 10.14016/j.cnki.1001-9227.2021.01.077

    RUAN Guoheng and LI Wenhang. Remote intelligent inspection method of transmission line based on video linkage technology[J]. Automation &Instrumentation, 2021(1): 77–80,84. doi: 10.14016/j.cnki.1001-9227.2021.01.077
    [55]
    吴锡, 王梓屹, 宋柯, 等. 基于Faster RCNN检测器的输电线路无人机自主巡检系统[J]. 电力信息与通信技术, 2020, 18(9): 8–15.

    WU Xi, WANG Ziyi, SONG Ke, et al. The autonomous inspection system of transmission line UAV based on Faster RCNN detector[J]. Electric Power Information and Communication Technology, 2020, 18(9): 8–15.
    [56]
    刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019, 13(2): 27–33. doi: 10.13648/j.cnki.issn1674-0629.2019.02.005

    LIU Yunpeng, PEI Shaotong, WU Jianhua, et al. Deep learning based target detection method for abnormal hot spots infrared images of transmission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27–33. doi: 10.13648/j.cnki.issn1674-0629.2019.02.005
    [57]
    李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79–84. doi: 10.13648/j.cnki.issn1674-0629.2019.12.012

    LI Wenpu, XIE Ke, LIAO Xiao, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved Faster RCNN[J]. Southern Power System Technology, 2019, 13(12): 79–84. doi: 10.13648/j.cnki.issn1674-0629.2019.12.012
    [58]
    Customvision website. https://www.customvision.ai.
    [59]
    BISONG E. Google AutoML: Cloud vision[M]. BISONG E. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Berkeley: Apress, 2019: 581–598.
    [60]
    CHEN Yuntao, HAN Chenxia, LI Yanghao, et al. SimpleDet: A simple and versatile distributed framework for object detection and instance recognition[J]. Journal of Machine Learning Research, 2019, 20(156): 1–8.
    [61]
    WU Yuxin, KIRILLOV A, MASSA F, et al. Detectron2[EB/OL]. https://github.com/facebookresearch/detectron2, 2019.
    [62]
    CHEN Kai, WANG Jiaqi, PANG Jiangmiao, et al. MMDetection: Open MMLab detection toolbox and benchmark[J]. arXiv: 1906.07155, 2019.
    [63]
    MA Yanjun, YU Dianhai, WU Tian, et al. PaddlePaddle: An open-source deep learning platform from industrial practice[J]. Frontiers of Data and Computing, 2019, 1(1): 105–115. doi: 10.11871/jfdc.issn.2096.742X.2019.01.011
    [64]
    HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
    [65]
    CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154–6162.
    [66]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007.
    [67]
    HINTON G, VINYALS O, and DEAN J. Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14(7): 38–39.
    [68]
    王勋, 王新, 魏举锋. 智能巡检系统在电力行业中的应用研究[J]. 四川水力发电, 2021, 40(1): 109–112. doi: 10.3969/j.issn.1001-2184.2021.01.025

    WANG Xun, WANG Xin, and WEI Jufeng. Application of intelligent inspection system in electrical power industry[J]. Sichuan Water Power, 2021, 40(1): 109–112. doi: 10.3969/j.issn.1001-2184.2021.01.025
    [69]
    严太山, 郑晓琼, 吕雪峰, 等. 变电站自动巡检管控系统研究与应用[J]. 农村电气化, 2021(3): 41–44. doi: 10.13882/j.cnki.ncdqh.2021.03.014

    YAN Taishan, ZHENG Xiaoqiong, LV Xuefeng, et al. Research and application of automatic patrol check, management control system in substations[J]. Rural Electrification, 2021(3): 41–44. doi: 10.13882/j.cnki.ncdqh.2021.03.014
    [70]
    张海华, 陈昊, 许驰, 等. 变电站立体智能巡检新技术研究与应用[J]. 湖北电力, 2021, 45(1): 41–46. doi: 10.19308/j.hep.2021.01.007

    ZHANG Haihua, CHEN Hao, XU Chi, et al. Research and application of new technology of three-dimensional intelligent inspection for substations[J]. Hubei Electric Power, 2021, 45(1): 41–46. doi: 10.19308/j.hep.2021.01.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (1783) PDF downloads(294) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return