Citation: | YAN Chenggang, ZHAO Xuan, XU Chenyu, CHEN Ke, GE Jipeng, WANG Chenghua, LIU Weiqiang. Design of High Precision Low Power Approximate Floating-point Multiplier Based on Partial Product Probability Analysis[J]. Journal of Electronics & Information Technology, 2023, 45(1): 87-95. doi: 10.11999/JEIT211485 |
[1] |
LIU Weiqiang, LOMBARDI F, and SHULTE M. A retrospective and prospective view of approximate computing[J]. Proceedings of the IEEE, 2020, 108(3): 394–399. doi: 10.1109/JPROC.2020.2975695
|
[2] |
WILSON L. International technology roadmap for semiconductors (ITRS)[EB/OL]. https://www.semiconductors.org/resources/2013-international-technology-roadmap-for-semiconductors-itrs/, 2013.
|
[3] |
VENKATARAMANI S, CHAKRADHAR ST, ROY K, et al. Computing approximately, and efficiently[C]. 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2015: 748–751.
|
[4] |
CHIPPA V K, CHAKRADHAR S T, ROY K, et al. Analysis and characterization of inherent application resilience for approximate computing[C]. The 50th Annual Design Automation Conference (DAC), Austin, USA, 2013: 113.
|
[5] |
LIU Bo, CAI Hao, WANG Zhen, et al. A 22nm, 10.8
|
[6] |
LIU Bo, DING Xiaoling, CAI Hao, et al. Precision adaptive MFCC based on R2SDF-FFT and approximate computing for low-power speech keywords recognition[J]. IEEE Circuits and Systems Magazine, 2021, 21(4): 24–39. doi: 10.1109/MCAS.2021.3118175
|
[7] |
WARIS H, WANG Chenghua, LIU Weiqiang, et al. Hybrid low radix encoding-based approximate booth multipliers[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(12): 3367–3371. doi: 10.1109/TCSII.2020.2975094
|
[8] |
VENKATACHALAM S, ADAMS E, LEE H J, et al. Design and analysis of area and power efficient approximate booth multipliers[J]. IEEE Transactions on Computers, 2019, 68(11): 1697–1703. doi: 10.1109/TC.2019.2926275
|
[9] |
LIU Weiqiang, QIAN Liangyu, WANG Chenghua, et al. Design of approximate radix-4 booth multipliers for error-tolerant computing[J]. IEEE Transactions on Computers, 2017, 66(8): 1435–1441. doi: 10.1109/TC.2017.2672976
|
[10] |
YI Xilin, PEI Haoran, ZHANG Ziji, et al. Design of an energy-efficient approximate compressor for error-resilient multiplications[C]. 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019: 1–5.
|
[11] |
FANG Bao, LIANG Huaguo, XU Dawen, et al. Approximate multipliers based on a novel unbiased approximate 4–2 compressor[J]. Integration, 2021, 81: 17–24. doi: 10.1016/j.vlsi.2021.05.003
|
[12] |
HA M and LEE S. Multipliers with approximate 4–2 compressors and error recovery modules[J]. IEEE Embedded Systems Letters, 2018, 10(1): 6–9. doi: 10.1109/LES.2017.2746084
|
[13] |
AKBARI O, KAMAL M, AFZALI-KUSHA A, et al. Dual-quality 4: 2 compressors for utilizing in dynamic accuracy configurable multipliers[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(4): 1352–1361. doi: 10.1109/TVLSI.2016.2643003
|
[14] |
SABETZADEH F, MOAIYERI M H, and AHMADINEJAD M. A majority-based imprecise multiplier for ultra-efficient approximate image multiplication[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(11): 4200–4208. doi: 10.1109/TCSI.2019.2918241
|
[15] |
PEI Haoran, YI Xilin, ZHOU Hang, et al. Design of ultra-low power consumption approximate 4–2 compressors based on the compensation characteristic[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(1): 461–465. doi: 10.1109/TCSII.2020.3004929
|
[16] |
NIU Zijing, JIANG Honglan, ANSARI M S, et al. A logarithmic floating-point multiplier for the efficient training of neural networks[C]. The 2021 on Great Lakes Symposium on VLSI, New York, USA, 2021: 65–70.
|
[17] |
JHA C K, WALIA S, KANOJIA G, et al. FPCAM: Floating point configurable approximate multiplier for error resilient applications[C]. 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021: 1–5.
|
[18] |
YIN Peipei, WANG Chenghua, LIU Weiqiang, et al. Design and performance evaluation of approximate floating-point multipliers[C]. 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, USA, 2016: 296–301.
|
[19] |
IEEE. IEEE Std 754–2008 IEEE standard for floating-point arithmetic[S]. IEEE, 2008.
|
[20] |
TONG J Y F, NAGLE D, and RUTENBAR R A. Reducing power by optimizing the necessary precision/range of floating-point arithmetic[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2000, 8(3): 273–286. doi: 10.1109/92.845894
|
[21] |
HSIAO S F, JIANG M R, YEH J S. Design of high-speed low-power 3–2 counter and 4–2 compressor for fast multipliers[J]. Electronics Letters, 1998, 34(4): 341–343. doi: 10.1049/el:19980306
|
[22] |
AHMADINEJAD M, MOAIYERI M H, and SABETZADEH F. Energy and area efficient imprecise compressors for approximate multiplication at nanoscale[J]. AEU- International Journal of Electronics and Communications, 2019, 110: 152859. doi: 10.1016/j.aeue.2019.152859
|
[23] |
STROLLO A G M, NAPOLI E, DE CARO D, et al. Comparison and extension of approximate 4–2 compressors for low-power approximate multipliers[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(9): 3021–3034. doi: 10.1109/TCSI.2020.2988353
|
[24] |
朱玉莹. 优化的近似Booth乘法器设计和评估及概率错误模型分析[D]. [硕士论文], 南京航空航天大学, 2020: 13–15.
ZHU Yuying. Design and evaluation of improved approximate Booth multipliers and probabilistic error model analysis[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2020: 13–15.
|