Advanced Search
Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHANG Yinan, WANG Guangxue, PENG Shirui, LENG Yi. Beamforming Research for Near-field Linear Sparse Array Based on Unmanned Aerial Vehicle Swarm[J]. Journal of Electronics & Information Technology, 2023, 45(1): 181-190. doi: 10.11999/JEIT211452
Citation: ZHANG Yinan, WANG Guangxue, PENG Shirui, LENG Yi. Beamforming Research for Near-field Linear Sparse Array Based on Unmanned Aerial Vehicle Swarm[J]. Journal of Electronics & Information Technology, 2023, 45(1): 181-190. doi: 10.11999/JEIT211452

Beamforming Research for Near-field Linear Sparse Array Based on Unmanned Aerial Vehicle Swarm

doi: 10.11999/JEIT211452
Funds:  The National Natural Science Foundation of China (62101592)
  • Received Date: 2021-12-06
  • Accepted Date: 2022-06-01
  • Rev Recd Date: 2022-05-11
  • Available Online: 2022-06-07
  • Publish Date: 2023-01-17
  • The antenna array composed of UAVs (Unmanned Aerial Vehicle Swarm) often presents near-field and sparse characteristics, which can not be adapted by the classical beamforming theory. Therefore, the near-field uniform linear array signal model is first constructed, and a simplified implementation method of near-field beamforming based on linear frequency modulation pulse compression by Taylor expansion of the signal phase difference function is proposed. Then the characteristics of near-field beamforming are analyzed in the two-dimensional space-frequency domain. From the perspective of spatial under sampling, the analytical expression of near-field beam grating lobe distribution under the condition of sparse array elements is proposed. From the perspective of spatial frequency offset and bandwidth mismatch, the variation characteristics of azimuth gain and range gain of near-field beam are analyzed and obtained. Simulation results show the effectiveness of the conclusions, and provide a theoretical support for using beamforming technology to improve the communication, reconnaissance and jamming capabilities of UAVs.
  • loading
  • [1]
    BARB G, OTESTEANU M, ALEXA F, et al. Digital beamforming techniques for future communications systems[C]. The 12th International Symposium on Communication Systems, Networks and Digital Signal Processing, Porto, Portugal, 2020: 1–4.
    [2]
    HAMID U, QAMAR R A, and WAQAS K. Performance comparison of time-domain and frequency-domain beamforming techniques for sensor array processing[C]. The 2014 11th International Bhurban Conference on Applied Sciences & Technology, Islamabad, Pakistan, 14th - 18th January, 2014, Islamabad, Pakistan, 2014: 379–385.
    [3]
    张苗苗, 刘益嘉, 王梦玄, 等. 超声平面波同相正交信号频域波束形成算法[J]. 声学学报, 2021, 46(1): 121–129. doi: 10.15949/j.cnki.0371-0025.2021.01.012

    ZHANG Miaomiao, LIU Yijia, WANG Mengxuan, et al. Fourier-based ultrasound plane wave beamforming using in-phase and quadrature data[J]. Acta Acustica, 2021, 46(1): 121–129. doi: 10.15949/j.cnki.0371-0025.2021.01.012
    [4]
    HUANG Hao, PENG Yang, YANG Jie, et al. Fast beamforming design via deep learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1065–1069. doi: 10.1109/TVT.2019.2949122
    [5]
    ZURAKHOV G, FRIEDMAN Z, BLONDHEIM D S, et al. High-resolution fast ultrasound imaging with adaptive-lag filtered delay-multiply-and-sum beamforming and multiline acquisition[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66(2): 348–358. doi: 10.1109/TUFFC.2018.2886182
    [6]
    ZHU Lipeng, ZHANG Jun, XIAO Zhenyu, et al. 3-D beamforming for flexible coverage in millimeter-wave UAV communications[J]. IEEE Wireless Communications Letters, 2019, 8(3): 837–840. doi: 10.1109/LWC.2019.2895597
    [7]
    XIAO Zhenyu, ZHU Lipeng, and XIA Xianggen. UAV communications with millimeter-wave beamforming: Potentials, scenarios, and challenges[J]. China Communications, 2020, 17(9): 147–166. doi: 10.23919/JCC.2020.09.012
    [8]
    RAJAMÄKI R, CHEPURI S P, and KOIVUNEN V. Hybrid beamforming for active sensing using sparse arrays[J]. IEEE Transactions on Signal Processing, 2020, 68: 6402–6417. doi: 10.1109/TSP.2020.3032657
    [9]
    韩国栋, 贾春来, 高冲, 等. 一种基于无人机群的三维组阵天线[P]. 中国专利, 110635255A, 2019.

    HAN Guodong, JIA Chunlai, GAO Chong, et al. Three-dimensional array antenna based on unmanned aerial vehicle group[P]. China Patent, 110635255A, 2019.
    [10]
    BAO Chaoying, FARAG G, and PAN J. Comparison of the performance of time domain and time-frequency domain adaptive beamforming[C]. OCEANS'10 IEEE OCEANS, Sydney Australia, 2010: 1–4.
    [11]
    NGUYEN D, ZOMORRODI M, KARMAKAR N, et al. Efficient beamforming technique based on sparse MIMO array and spatial filter bank[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1147–1151. doi: 10.1109/LAWP.2020.2991993
    [12]
    DING Yipeng and LI Zhengmin. A blind beamforming algorithm based on time-frequency analysis technology[C]. The 2021 6th International Conference on Intelligent Computing and Signal Processing, Xi’an, China, 2021: 367–371.
    [13]
    黄俊生, 苏洪涛. 二维相控阵-MIMO雷达联合发射子阵划分和波束形成设计方法[J]. 电子与信息学报, 2020, 42(7): 1557–1565. doi: 10.11999/JEIT190429

    HUANG Junsheng and SU Hongtao. Joint transmitting subarray partition and beamforming design method based on two-dimensional phased-MIMO radar[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1557–1565. doi: 10.11999/JEIT190429
    [14]
    彭芳, 吴军, 王帅, 等. 基于SVRGD的机载预警雷达自适应波束形成算法[J]. 系统工程与电子技术, 2021, 43(1): 83–90. doi: 10.3969/j.issn.1001-506X.2021.01.11

    PENG Fang, WU Jun, WANG Shuai, et al. Adaptive beamforming algorithm for airborne early warning radar based on SVRGD[J]. Systems Engineering and Electronics, 2021, 43(1): 83–90. doi: 10.3969/j.issn.1001-506X.2021.01.11
    [15]
    吕岩, 曹菲. 基于线性约束最小方差的稳健波束形成算法[J/OL]. 北京航空航天大学学报, 2022: 1–12. https://doi.org/10.13700/j.bh.1001-5965.2021.0280, 2022

    LYU Yan and CAO Fei. Robust beamforming based on linear constraint minimum variance algorithm[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2022: 1–12. https://doi.org/10.13700/j.bh.1001-5965.2021.0280, 2022
    [16]
    LIU Shuai, CAO Yunhe, YEO T S, et al. Range sidelobe suppression for randomized stepped-frequency chirp radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3874–3885. doi: 10.1109/TAES.2021.3082670
    [17]
    JIA Fengde, SUN Guohao, HE Zishu, et al. Grating-lobe clutter suppression in uniform subarray for airborne radar STAP[J]. IEEE Sensors Journal, 2019, 19(16): 6956–6965. doi: 10.1109/JSEN.2019.2912827
    [18]
    ZHU Rongqiang, ZHOU Jianxiong, JIANG Ge, et al. Grating lobe suppression in near range MIMO array imaging using zero migration[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(1): 387–397. doi: 10.1109/TMTT.2019.2941188
    [19]
    HU Cheng, CHEN Zhiyang, DONG Xichao, et al. Multistatic geosynchronous SAR resolution analysis and grating lobe suppression based on array spatial ambiguity function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6020–6038. doi: 10.1109/TGRS.2020.2969573
    [20]
    刘雄厚, 孙超, 杨益新, 等. 利用发射栅瓣的成像方法[P]. 中国专利, 201510209224.8, 2015.

    LIU Xionghou, SUN Chao, YANG Yixin, et al. Imaging method through transmitting grating lobes[P]. China Patent, 201510209224.8, 2015.
    [21]
    张嘉焱. 高功率微波空间功率合成的初步研究[D]. [硕士论文]. 国防科学技术大学, 2006.

    ZHANG Jiayan. Primary study on spatial powers combining of high power microwave[D]. [Master dissertation]. National University of Defense Technology, 2006.
    [22]
    傅文斌. 微波技术与天线[M]. 2版. 北京: 机械工业出版社, 2013: 203–205.

    FU Wenbin. Microwave Technology and Antenna[M]. 2nd ed. Beijing: China Machine Press, 2013: 203–205.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (967) PDF downloads(300) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return