Citation: | FAN Wen, WEI Qian, ZHOU Zhi, YU Shuai, CHEN Xu. A Research on Collaborative UAVs Intelligent Decision Optimization for AoI-driven Federated Learning[J]. Journal of Electronics & Information Technology, 2022, 44(9): 2994-3003. doi: 10.11999/JEIT211406 |
[1] |
PHAM Q V, FANG Fang, HA V N, et al. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art[J]. IEEE Access, 2020, 8: 116974–117017. doi: 10.1109/ACCESS.2020.3001277
|
[2] |
LIM W Y B, LUONG N C, HOANG D T, et al. Federated learning in mobile edge networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 2031–2063. doi: 10.1109/COMST.2020.2986024
|
[3] |
WANG Jingrong, LIU Kaiyang, and PAN Jianping. Online UAV-mounted edge server dispatching for mobile-to-mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(2): 1375–1386. doi: 10.1109/JIOT.2019.2954798
|
[4] |
BRIK B, KSENTINI A, and BOUAZIZ M. Federated learning for UAVs-enabled wireless networks: Use cases, challenges, and open problems[J]. IEEE Access, 2020, 8: 53841–53849. doi: 10.1109/ACCESS.2020.2981430
|
[5] |
JEONG S, SIMEONE O, and KANG J. Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2049–2063. doi: 10.1109/TVT.2017.2706308
|
[6] |
MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
|
[7] |
POUYANFAR S, SADIQ S, YAN Yilin, et al. A survey on deep learning: Algorithms, techniques, and applications[J]. ACM Computing Surveys, 2019, 51(5): 92. doi: 10.1145/3234150
|
[8] |
SUN Yin, UYSAL-BIYIKOGLU E, YATES R D, et al. Update or wait: How to keep your data fresh[J]. IEEE Transactions on Information Theory, 2017, 63(11): 7492–7508. doi: 10.1109/TIT.2017.2735804
|
[9] |
DAI Zipeng, LIU C H, HAN Rui, et al. Delay-sensitive energy-efficient UAV crowdsensing by deep reinforcement learning[J]. IEEE Transactions on Mobile Computing, To be published.
|
[10] |
KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 2731–273.
|
[11] |
LUO Siqi, CHEN Xu, WU Qiong, et al. HFEL: Joint edge association and resource allocation for cost-efficient hierarchical federated edge learning[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6535–6548. doi: 10.1109/TWC.2020.3003744
|
[12] |
WANG Liang, WANG Kezhi, PAN Cunhua, et al. Deep reinforcement learning based dynamic trajectory control for UAV-assisted mobile edge computing[J]. IEEE Transactions on Mobile Computing, To be published.
|
[13] |
SHEIKH H U and BŐLŐNI L. Multi-agent reinforcement learning for problems with combined individual and team reward[C]. 2020 International Joint Conference on Neural Networks, Glasgow, UK, 2020: 1–8.
|
[14] |
CAO Xi, WAN Huaiyu, LIN Youfang, et al. High-value prioritized experience replay for off-policy reinforcement learning[C]. The 31st International Conference on Tools with Artificial Intelligence, Portland, USA, 2019: 1510–1514.
|