Advanced Search
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
ZENG Rong, SHAO Zhimin. Research on Interference Suppression Algorithm in Reconfigurable Intelligent Surface Environment in ZP-OFDM[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2358-2365. doi: 10.11999/JEIT211389
Citation: ZENG Rong, SHAO Zhimin. Research on Interference Suppression Algorithm in Reconfigurable Intelligent Surface Environment in ZP-OFDM[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2358-2365. doi: 10.11999/JEIT211389

Research on Interference Suppression Algorithm in Reconfigurable Intelligent Surface Environment in ZP-OFDM

doi: 10.11999/JEIT211389
Funds:  The Open Research Foundation of the State Key Laboratory of Mobile Communication, Southeast University (2020D-13), The Open Project of Zhijiang Laboratory (2019LC0AB02)
  • Received Date: 2021-12-01
  • Accepted Date: 2022-05-24
  • Rev Recd Date: 2022-05-11
  • Available Online: 2022-05-27
  • Publish Date: 2022-07-25
  • Equivalent channel time variation caused by coefficient conversion of reflective elements in Zero Prefix Orthogonal Frequency Division Multiplexing (ZP-OFDM) system in Reconfigurable Intelligent Surface (RIS) scene, it destroys the orthogonality of Orthogonal Frequency Division Multiplexing (OFDM) system and produces serious Inter Carrier Interference (ICI). In this paper, by constructing the system transmission model in this scenario, analyzing the ICI power and modeling the time-varying characteristics of the coefficient conversion of the reflection element, the ICI is compensated by constructing the inter subcarrier interference suppression matrix to suppress the impact of the equivalent time-varying channel caused by the change of reflection coefficient on the system performance. The simulation results show that the inter subcarrier interference is effectively suppressed, and the interference suppression algorithm proposed in this paper can significantly improve the transmission performance of the system.
  • loading
  • [1]
    NOUROLLAHI H and MAGHREBI S G. Evaluation of cyclic prefix length in OFDM system based for Rayleigh fading channels under different modulation schemes[C]. 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 2017: 164–169.
    [2]
    AN C and RYU H G. Spectrum efficient multidimensional OFDM-CDIM communication system[C]. 2020 23rd International Symposium on Wireless Personal Multimedia Communications (WPMC), Okayama, Japan, 2020: 1–4.
    [3]
    ZHANG Shunqing, WU Qingqing, XU Shugong, et al. Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 33–56. doi: 10.1109/COMST.2016.2594120
    [4]
    WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
    [5]
    LIANG Yingchang, LONG Ruizhe, ZHANG Qianqian, et al. Large intelligent surface/antennas (LISA): Making reflective radios smart[J]. Journal of Communications and Information Networks, 2019, 4(2): 40–50. doi: 10.23919/JCIN.2019.8917871
    [6]
    LU Ruitianyi. Energy-efficiency optimization in dual reconfigurable intelligent surfaces wireless communication system[C]. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT), Changsha, China, 2021: 470–473.
    [7]
    HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534
    [8]
    ZENG Shuhao, ZHANG Hongliang, DI Boya, et al. Reconfigurable Intelligent Surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization[J]. IEEE Communications Letters, 2021, 25(1): 269–273. doi: 10.1109/LCOMM.2020.3025345
    [9]
    YANG Liang, MENG Fanxu, WU Qingqing, et al. Accurate closed-form approximations to channel distributions of RIS-aided wireless systems[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1985–1989. doi: 10.1109/LWC.2020.3010512
    [10]
    MA Xiaoli, YE Hao, and LI Ye. Learning assisted estimation for time-varying channels[C]. 2018 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 2018: 1–5.
    [11]
    陈婷, 洪伟, 郑昱, 等. 基于OFDM的毫米波通信多径信道模型分析[J]. 火控雷达技术, 2020, 49(2): 93–96. doi: 10.19472/j.cnki.1008-8652.2020.02.018

    CHEN Ting, HONG Wei, ZHENG Yu, et al. An analysis of multipath channel model for millimeter wave communication based on OFDM[J]. Fire Control Radar Technology, 2020, 49(2): 93–96. doi: 10.19472/j.cnki.1008-8652.2020.02.018
    [12]
    ZHAO Shiduo, YAN Shefeng, and XU Lijun. Doppler estimation based on HFM signal for underwater acoustic time-varying multipath channel[C]. 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 2019: 1–6.
    [13]
    SARASWATHI K and RAVISHANKAR S. Efficient estimation and compensation of Doppler shift for OFDM signals in underwater communications[C]. 2016 Sixth International Symposium on Embedded Computing and System Design (ISED), Patna, India, 2016: 137–141.
    [14]
    MAHMUD H, HOSSAIN M, KHAN A A, et al. Performance analysis of OFDM, W-OFDM and F-OFDM under rayleigh fading channel for 5G wireless communication[C]. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 2020: 1172–1177.
    [15]
    GHOSH M. Improved equalization for coded, zero-padded OFDM (ZP-OFDM) systems[C]. 2007 IEEE International Conference on Communications, Glasgow, UK, 2007: 4263–4268.
    [16]
    LOWE D and HUANG Xiaojing. Adaptive overlap-add equalization for MB-OFDM ultra-wideband[C]. 2006 International Symposium on Communications and Information Technologies, Bangkok, Thailand, 2006: 644–648.
    [17]
    YOUSSEF A, DRIESSEN P F, GEBALI F, et al. Enhancement of time compression overlap-add using multirate downsample upsample shift add algorithm[C]. 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, Canada, 2017: 1–5.
    [18]
    WANG Kai, WEI Haijian, HE Wei, et al. Dynamic measurement for compressed sensing based channel estimation in OFDM systems[C]. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 106–110.
    [19]
    WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Channel estimation for RIS-empowered multi-user MISO wireless communications[J]. IEEE Transactions on Communications, 2021, 69(6): 4144–4157. doi: 10.1109/TCOMM.2021.3063236
    [20]
    WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5.
    [21]
    尹海帆, 李展鹏. 一种智能超表面的反射系数计算方法及系统[P]. 中国专利, 112838884A, 2021.

    YIN Haifan and LI Zhanpeng. Method and system for calculating reflection coefficient of intelligent metasurface[P]. China Patent, 112838884A, 2021.
    [22]
    KHEDKAR A R, MURUGAN M, and MATE A A. ICI cancellation using Raised Cosine windowing in OFDM system[C]. 2014 Annual IEEE India Conference (INDICON), Pune, India, 2014: 1–4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (338) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return