Advanced Search
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
QIN Jianhua, YANG Mutian, LU Yongling, WANG Zhen, HU Chengbo. Research on Three-Dimensional Geometry-Based Channel Modeling for Power Internet of Things Communications[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3051-3057. doi: 10.11999/JEIT211300
Citation: QIN Jianhua, YANG Mutian, LU Yongling, WANG Zhen, HU Chengbo. Research on Three-Dimensional Geometry-Based Channel Modeling for Power Internet of Things Communications[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3051-3057. doi: 10.11999/JEIT211300

Research on Three-Dimensional Geometry-Based Channel Modeling for Power Internet of Things Communications

doi: 10.11999/JEIT211300
  • Received Date: 2021-11-10
  • Rev Recd Date: 2022-04-13
  • Available Online: 2022-04-19
  • Publish Date: 2022-09-19
  • The existing literature adopt ellipse models to describe the communication scenarios of the power Internet of Things (IoT) for sixth Generation (6G), which neglect the impacts of the elevation angles of the paths on the propagation characteristics. To solve this issue, a three-dimensional semi-ellipsoid model to describe the communication scenarios of the power IoT for 6G is proposed, which improves the matching accuracy of the propagation model with the practical communication scenarios of the power Internet of Things. In the proposed algorithm, the transmission characteristics of physical layer data are revealed by deriving expressions for the complex impulse response functions of different transmission paths in the wireless transmission channel of power IoT communication. Simulation results analyze the cross-correlation characteristics between different transmission paths, explore the multi-node channel transmission characteristics of the power IoT, and Verify the correctness of the above data transmission analysis algorithm. The aforementioned research is meaningful for the design of the power internet of things communications systems.
  • loading
  • [1]
    谢军, 庄建楼, 康成斌. 基于北斗系统的物联网技术与应用[J]. 南京航空航天大学学报, 2021, 53(3): 329–337. doi: 10.16356/j.1005-2615.2021.03.001

    XIE Jun, ZHUANG Jianlou, and KANG Chengbin. Internet of things technology and application based on Beidou system[J]. Journal of Nanjing University of Aeronautics &Astronautics, 2021, 53(3): 329–337. doi: 10.16356/j.1005-2615.2021.03.001
    [2]
    张天宇, 赵宇超, 王重阳. 基于LoRa技术的同步相量采集系统设计与研究[J]. 南方电网技术, 2020, 14(8): 41–44. doi: 10.13648/j.cnki.issn1674-0629.2020.08.006

    ZHANG Tianyu, ZHAO Yuchao, and WANG Chongyang. Design and research of phasor measurement system based on LoRa technology[J]. Southern Power System Technology, 2020, 14(8): 41–44. doi: 10.13648/j.cnki.issn1674-0629.2020.08.006
    [3]
    孙浩洋, 张冀川, 王鹏, 等. 面向配电物联网的边缘计算技术[J]. 电网技术, 2019, 43(12): 4314–4321. doi: 10.13335/j.1000-3673.pst.2019.1750

    SUN Haoyang, ZHANG Jichuan, WANG Peng, et al. Edge computation technology based on distribution internet of things[J]. Power System Technology, 2019, 43(12): 4314–4321. doi: 10.13335/j.1000-3673.pst.2019.1750
    [4]
    王承祥, 黄杰, 王海明, 等. 面向6G的无线通信信道特性分析与建模[J]. 物联网学报, 2020, 4(1): 19–32. doi: 10.11959/j.issn.2096?3750.2020.00155

    WANG Chengxiang, HUANG Jie, WANG Haiming, et al. 6G oriented wireless communication channel characteristics analysis and modeling[J]. Chinese Journal on Internet of Things, 2020, 4(1): 19–32. doi: 10.11959/j.issn.2096?3750.2020.00155
    [5]
    廖家齐, 钱科军, 方华亮, 等. 基于泛在电力物联网的电动汽车充电站运维关键技术[J]. 电力建设, 2019, 40(9): 20–26. doi: 10.3969/j.issn.1000-7229.2019.09.003

    LIAO Jiaqi, QIAN Kejun, FANG Hualiang, et al. Key technologies of operation and maintenance of electric vehicle charging stations in ubiquitous power internet of things[J]. Electric Power Construction, 2019, 40(9): 20–26. doi: 10.3969/j.issn.1000-7229.2019.09.003
    [6]
    伍晓平. 电力物联网信息模型及通信协议的设计与实现[J]. 电子世界, 2020(3): 165–166. doi: 10.19353/j.cnki.dzsj.2020.03.092

    WU Xiaoping. Design of the power internet of things[J]. Electronics World, 2020(3): 165–166. doi: 10.19353/j.cnki.dzsj.2020.03.092
    [7]
    HE Ruisi, AI Bo, STÜBER G L, et al. Geometrical-based modeling for millimeter-wave MIMO mobile-to-mobile channels[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2848–2863. doi: 10.1109/TVT.2017.2774808
    [8]
    JIANG Hao, ZHANG Zaichen, DANG Jian, et al. Analysis of geometric multibounced virtual scattering channel model for dense urban street environments[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 1903–1912. doi: 10.1109/TVT.2016.2574925
    [9]
    JIANG Hao, ZHANG Zaichen, WU Liang, et al. A 3-D non-stationary wideband geometry-based channel model for MIMO vehicle-to-vehicle communications in tunnel environments[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6257–6271. doi: 10.1109/TVT.2019.2918333
    [10]
    WU Shangbin, WANG Chengxiang, AGGOUNE E H M, et al. A non-stationary 3-D wideband twin-cluster model for 5G massive MIMO channels[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1207–1218. doi: 10.1109/JSAC.2014.2328131
    [11]
    BIAN Ji, WANG Chengxiang, GAO Xiqi, et al. A general 3D non-stationary wireless channel model for 5G and beyond[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 3211–3224. doi: 10.1109/TWC.2020.3047973
    [12]
    HE Ruisi, AI Bo, STÜBER G L, et al. Mobility model-based non-stationary mobile-to-mobile channel modeling[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4388–4400. doi: 10.1109/TWC.2018.2824804
    [13]
    ZHANG Jianhua, PAN Chun, PEI Feng, et al. Three-dimensional fading channel models: A survey of elevation angle research[J]. IEEE Communications Magazine, 2014, 52(6): 218–226. doi: 10.1109/MCOM.2014.6829967
    [14]
    JIANG Hao, ZHANG Zaichen, DANG Jian, et al. A novel 3-D massive MIMO channel model for vehicle-to-vehicle communication environments[J]. IEEE Transactions on Communications, 2018, 66(1): 79–90. doi: 10.1109/TCOMM.2017.2751555
    [15]
    YUAN Yi, WANG Chengxiang, CHENG Xiang, et al. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Transactions on Wireless Communications, 2014, 13(1): 298–309. doi: 10.1109/TWC.2013.120313.130434
    [16]
    YUAN Yi, WANG Chengxiang, HE Yejun, et al. 3D wideband non-stationary geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6883–6895. doi: 10.1109/TWC.2015.2461679
    [17]
    TAN Yi, WANG Chengxiang, NIELSEN J Ø, et al. A novel B5G frequency nonstationary wireless channel model[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4846–4860. doi: 10.1109/TAP.2021.3060063
    [18]
    YANG Mi, AI Bo, HE Ruisi, et al. Non-stationary vehicular channel characterization in complicated scenarios[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8387–8400. doi: 10.1109/TVT.2021.3096973
    [19]
    GHAZAL A, YUAN Yi, WANG Chengxiang, et al. A non-stationary IMT-advanced MIMO channel model for high-mobility wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(4): 2057–2068. doi: 10.1109/TWC.2016.2628795
    [20]
    JIANG Hao, XIONG Baiping, ZHANG Zaichen, et al. Novel statistical wideband MIMO V2V channel modeling using unitary matrix transformation algorithm[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4947–4961. doi: 10.1109/TWC.2021.3063762
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (377) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return