Advanced Search
Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
CHEN Xiang, SUN Dongquan, CUI Wanzhao. Gap Waveguide Technology and its Space Applications[J]. Journal of Electronics & Information Technology, 2023, 45(1): 168-180. doi: 10.11999/JEIT211291
Citation: CHEN Xiang, SUN Dongquan, CUI Wanzhao. Gap Waveguide Technology and its Space Applications[J]. Journal of Electronics & Information Technology, 2023, 45(1): 168-180. doi: 10.11999/JEIT211291

Gap Waveguide Technology and its Space Applications

doi: 10.11999/JEIT211291
Funds:  The National Natural Science Foundation of China (61901359, 61901320)
  • Received Date: 2021-11-18
  • Rev Recd Date: 2022-04-04
  • Available Online: 2022-04-12
  • Publish Date: 2023-01-17
  • Gap Waveguide (GW) is a new kind of artificial ElectroMagnetic (EM) material based on contactless Electromagnetic Band Gap(EBG) structure. The unique contactless structure and wide EM forbidden band of GW show great advantages and flexibility in developing new EM transmission lines and shielding structures, providing a new research perspective and realization approach for microwave & millimeter-wave components, circuits and antennas, etc., and causing much attentions in recent years. Firstly, the concept and principle of GW are briefly introduced, and its technical advantages are analyzed. Then, the research progress of GW is comprehensively summarized, according to the classification of various research and application fields. In the end, the application prospect of GW in space microwave & millimeter-wave technology is discussed combining with space technology background and development needs, and the contactless suppression method of passive intermodulation and stacked-integrated technology of millimeter-wave systems are proposed. This work can provide some valuable references for the research and application of GW.
  • loading
  • [1]
    徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363
    [2]
    KILDAL P S, ALFONSO E, VALERO-NOGUEIRA A, et al. Local metamaterial-based waveguides in gaps between parallel metal plates[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 84–87. doi: 10.1109/LAWP.2008.2011147
    [3]
    MOROZOV G V and SPRUNG D W L. Floquet-Bloch waves in one-dimensional photonic crystals[J]. Europhysics Letters, 2011, 96(5): 54005. doi: 10.1209/0295-5075/96/54005
    [4]
    BERENGUER A, FUSCO V, ZELENCHUK D E, et al. Propagation characteristics of groove gap waveguide below and above cutoff[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(1): 27–36. doi: 10.1109/TMTT.2015.2504501
    [5]
    KILDAL P S, ZAMAN A U, RAJO-IGLESIAS E, et al. Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression[J]. IET Microwaves, Antennas & Propagation, 2011, 5(3): 262–270. doi: 10.1049/iet-map.2010.0089
    [6]
    RAZA H, YANG Jian, KILDAL P S, et al. Microstrip-ridge gap waveguide–study of losses, bends, and transition to WR-15[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(9): 1943–1952. doi: 10.1109/TMTT.2014.2327199
    [7]
    BRAZÁLEZ A A, RAJO-IGLESIAS E, VÁZQUEZ-ROY J L, et al. Design and validation of microstrip gap waveguides and their transitions to rectangular waveguide, for millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(12): 4035–4050. doi: 10.1109/TMTT.2015.2495141
    [8]
    RAZA H, YANG Jian, KILDAL P S, et al. Resemblance between gap waveguides and hollow waveguides[J]. IET Microwaves, Antennas & Propagation, 2013, 7(15): 1221–1227. doi: 10.1049/iet-map.2013.0178
    [9]
    NASR M A and KISHK A A. Vertical coaxial-to-ridge waveguide transitions for ridge and ridge gap waveguides with 4: 1 bandwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(1): 86–93. doi: 10.1109/TMTT.2018.2873312
    [10]
    BIRGERMAJER S, JANKOVIĆ N, RADONIĆ V, et al. Microstrip-ridge gap waveguide filter based on cavity resonators with mushroom inclusions[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 136–146. doi: 10.1109/TMTT.2017.2750149
    [11]
    SHI Yongrong, ZHANG Junzhi, ZENG Sheng, et al. Novel W-band millimeter-wave transition from microstrip line to groove gap waveguide for MMIC integration and antenna application[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 3172–3176. doi: 10.1109/TAP.2018.2819902
    [12]
    PENG Songtao, PU Youlei, WU Zewei, et al. A broadband transition from ridge gap waveguide to microstrip using suspended line coupling[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(3): 253–256. doi: 10.1109/LMWC.2020.3040651
    [13]
    SHI Yongrong, FENG Wenjie, WANG Hao, et al. Novel W-band LTCC transition from microstrip line to ridge gap waveguide and its application in 77/79 GHz antenna array[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 915–924. doi: 10.1109/TAP.2018.2882625
    [14]
    MORALES-HERNÁNDEZ A, FERRANDO-ROCHER M, SÁNCHEZ-SORIANO M Á, et al. Design strategy and considerations to improve corona discharge breakdown in groove gap waveguides[C]. IEEE 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 2021: 1–5.
    [15]
    FAN Fangfang, YANG Jian, VASSILEV V, et al. Bandwidth investigation on half-height pin in ridge gap waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 100–108. doi: 10.1109/TMTT.2017.2732983
    [16]
    EBRAHIMPOURI M, RAJO-IGLESIAS E, SIPUS Z, et al. Cost-effective gap waveguide technology based on glide-symmetric holey EBG structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 927–934. doi: 10.1109/TMTT.2017.2764091
    [17]
    SUN Dongquan, CHEN Xiang, DENG Jingya, et al. Gap waveguide with interdigital-pin bed of nails for high-frequency applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(7): 2640–2648. doi: 10.1109/TMTT.2019.2914907
    [18]
    SUN Dongquan, CHEN Xiang, and GUO Lixin. Compact corrugated plate for double-sided contactless waveguide flange[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(2): 129–132. doi: 10.1109/LMWC.2020.3042279
    [19]
    SUN Dongquan, CHEN Xiang, GUO Lixin, et al. Hard–soft groove gap waveguide based on perpendicularly stacked corrugated metal plates[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(8): 3684–3692. doi: 10.1109/TMTT.2021.3086497
    [20]
    PENG Songtao, PU Youlei, WU Zewei, et al. Embedded bed of nails with robustness suitable for broadband gap waveguide technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(12): 5317–5326. doi: 10.1109/TMTT.2021.3116178
    [21]
    BAYAT-MAKOU N and KISHK A A. Contactless air-filled substrate integrated waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(6): 2928–2935. doi: 10.1109/TMTT.2018.2818137
    [22]
    ZHAO Xiaofei, DENG Jingya, YIN Jiayuan, et al. Novel suspended-line gap waveguide packaged with stacked-mushroom EBG structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(5): 2447–2457. doi: 10.1109/TMTT.2021.3068260
    [23]
    PUCCI E and KILDAL P S. Contactless non-leaking waveguide flange realized by bed of nails for millimeter wave applications[C]. IEEE 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012: 3533–3536.
    [24]
    孙冬全. 毫米波间隙波导技术及FMCW反射功率对消系统应用研究[D]. [博士论文], 东南大学, 2017.

    SUN Dongquan. Research on millimeter-wave gap waveguide technology and FMCW reflected power cancelation systems[D]. [Ph. D. dissertation], Southeast University, 2017.
    [25]
    RAHIMINEJAD S, PUCCI E, VASSILEV V, et al. Polymer gap adapter for contactless, robust, and fast measurements at 220–325 GHz[J]. Journal of Microelectromechanical Systems, 2016, 25(1): 160–169. doi: 10.1109/JMEMS.2015.2500277
    [26]
    SUN Dongquan, CHEN Zhenhua, YAO Changfei, et al. Flexible rectangular waveguide based on cylindrical contactless flange[J]. Electronics Letters, 2016, 52(25): 2042–2044. doi: 10.1049/el.2016.3536
    [27]
    SUN Dongquan and XU Jinping. Real time rotatable waveguide twist using contactless stacked air-gapped waveguides[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(3): 215–217. doi: 10.1109/LMWC.2017.2661881
    [28]
    AHMADI B and BANAI A. Direct coupled resonator filters realized by gap waveguide technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(10): 3445–3452. doi: 10.1109/TMTT.2015.2457916
    [29]
    XIU Tao, YAO Yuan, JIANG Hang, et al. Design of a compact and low-loss E-band filter based on multilayer groove gap waveguide[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(11): 1211–1214. doi: 10.1109/LMWC.2021.3111955
    [30]
    SUN Dongquan and XU Jinping. A novel iris waveguide bandpass filter using air gapped waveguide technology[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(7): 475–477. doi: 10.1109/LMWC.2016.2574822
    [31]
    REZAEE M and ZAMAN A U. Groove gap waveguide filter based on horizontally polarized resonators for V-band applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(7): 2601–2609. doi: 10.1109/TMTT.2020.2986111
    [32]
    SUN Dongquan and XU Jinping. Rectangular waveguide coupler with adjustable coupling coefficient using gap waveguide technology[J]. Electronics Letters, 2017, 53(3): 167–169. doi: 10.1049/el.2016.4039
    [33]
    PALOMARES-CABALLERO Á, ALEX-AMOR A, ESCOBEDO P, et al. Low-loss reconfigurable phase shifter in gap-waveguide technology for mm-wave applications[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(12): 3058–3062. doi: 10.1109/TCSII.2020.3000058
    [34]
    SÁNCHEZ-ESCUDEROS D, HERRANZ-HERRUZO J I, FERRANDO-ROCHER M, et al. True-time-delay mechanical phase shifter in gap waveguide technology for slotted waveguide arrays in Ka-band[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2727–2740. doi: 10.1109/TAP.2020.3030993
    [35]
    陈翔, 孙冬全, 李小军, 等. U型超宽带非接触式波导旋转关节、控制系统、方法及应用[P]. 中国专利, 111934062A, 2020.

    CHEN Xiang, SUN Dongquan, LI Xiaojun, et al. U-shaped ultra-wideband non-contact waveguide rotary joint, control system, method and application[P]. China Patent, 111934062A, 2020.
    [36]
    FARAHBAKHSH A. Wideband rotary joint based on gap waveguide technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(10): 4385–4391. doi: 10.1109/TMTT.2021.3090988
    [37]
    HORESTANI A K, SHATERIAN Z, and MROZOWSKI M. High dynamic range microwave displacement and rotation sensors based on the phase of transmission in groove gap waveguide technology[J]. IEEE Sensors Journal, 2022, 22(1): 182–189. doi: 10.1109/JSEN.2021.3130658
    [38]
    WANG Minxing, WU Zewei, LIAO Xiaoyi, et al. Exciting circular TM11 mode using symmetric probes based on ridge gap waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1): 334–342. doi: 10.1109/TMTT.2021.3121324
    [39]
    TAMAYO-DOMÍNGUEZ A, FERNÁNDEZ-GONZÁLEZ J M, and SIERRA-CASTAÑER M. 3-D-printed modified butler matrix based on gap waveguide at W-band for monopulse radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(3): 926–938. doi: 10.1109/TMTT.2019.2953164
    [40]
    SHI Yongrong, ZHANG Junzhi, ZHOU Ming, et al. Miniaturized W-band gap waveguide bandpass filter using the MEMS technique for both waveguide and surface mounted packaging[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(6): 938–942. doi: 10.1109/TCSII.2018.2873236
    [41]
    FARJANA S, GHADERI M, ZAMAN A U, et al. Low-loss gap waveguide transmission line and transitions at 220–320 GHz using dry film micromachining[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(11): 2012–2021. doi: 10.1109/TCPMT.2021.3111137
    [42]
    AHMADI B and BANAI A. Substrateless amplifier module realized by ridge gap waveguide technology for millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11): 3623–3630. doi: 10.1109/TMTT.2016.2607177
    [43]
    FERRANDO-ROCHER M, HERRANZ-HERRUZO J I, VALERO-NOGUEIRA A, et al. 8×8 Ka-band dual-polarized array antenna based on gap waveguide technology[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(7): 4579–4588. doi: 10.1109/TAP.2019.2908109
    [44]
    SHI Yongrong, FENG Wenjie, and CAO Baolin. W-band gap waveguide antenna array: Passive/active component gap waveguide transition interface for system integration[J]. IEEE Antennas and Propagation Magazine, 2021, 63(2): 40–49. doi: 10.1109/MAP.2019.2943306
    [45]
    LIU Ying, YUE Zhenzhen, JIA Yongtao, et al. Dual-band dual-circularly polarized antenna array with printed ridge gap waveguide[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 5118–5123. doi: 10.1109/TAP.2020.3048504
    [46]
    VILENSKIY A R, MAKURIN M N, LEE C, et al. Reconfigurable transmitarray with near-field coupling to gap waveguide array antenna for efficient 2-D beam steering[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 7854–7865. doi: 10.1109/TAP.2020.2998904
    [47]
    TAMAYO-DOMÍNGUEZ A, FERNÁNDEZ-GONZÁLEZ J M, and SIERRA-CASTAÑER M. Monopulse radial line slot array antenna fed by a 3-D-printed cavity-ended modified butler matrix based on gap waveguide at 94 GHz[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4558–4568. doi: 10.1109/TAP.2021.3060045
    [48]
    LIU Jinlin, YANG Fei, FAN Kuikui, et al. Unequal power divider based on inverted microstrip gap waveguide and its application for low sidelobe slot array antenna at 39 GHz[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(12): 8415–8425. doi: 10.1109/TAP.2021.3096981
    [49]
    QUAN Yu, WANG Hao, TAO Shifei, et al. A double-layer multibeam antenna with 45° linear polarization based on gap waveguide technology[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 56–66. doi: 10.1109/TAP.2021.3090507
    [50]
    SUN Dongquan and XU Jinping. Compact phase corrected H-plane horn antenna using slow-wave structures[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1032–1035. doi: 10.1109/LAWP.2016.2618843
    [51]
    MOHAMMADPOUR M, MOHAJERI F, and RAZAVI S A. A new wide band and compact H-plane horn antenna based on groove gap waveguide technology[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 221–228. doi: 10.1109/TAP.2021.3111342
    [52]
    YUAN Wei, CHEN Jianfeng, ZHANG Cheng, et al. Glide-symmetric lens antenna in gap waveguide technology[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 2612–2620. doi: 10.1109/TAP.2019.2955919
    [53]
    BRAZALEZ A A, ZAMAN A U, and KILDAL P S. Improved microstrip filters using PMC packaging by lid of nails[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(7): 1075–1084. doi: 10.1109/TCPMT.2012.2190931
    [54]
    ASHRAF N, SEBAK A R, and KISHK A A. PMC packaged single-substrate 4 × 4 butler matrix and double-ridge gap waveguide horn antenna array for multibeam applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 248–261. doi: 10.1109/TMTT.2020.3022092
    [55]
    CHEN Xiang, SUN Dongquan, CUI Wanzhao, et al. A folded contactless waveguide flange for low passive-intermodulation applications[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(10): 864–866. doi: 10.1109/LMWC.2018.2865506
    [56]
    JIANG Xun, JIA Fangxiu, SHI Yongrong, et al. Ridge gap waveguide layer transition for compact 3-D waveguide packaging application[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(10): 2136–2139. doi: 10.1109/TCPMT.2019.2937436
    [57]
    WANG Lin, DING Dazhi, CHEN Rushan, et al. Transient analysis of high-power microwave air breakdown under external DC magnetic field[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4894–4903. doi: 10.1109/TAP.2020.2969894
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (3300) PDF downloads(475) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return