Citation: | LI Guanghui, LI Yijing, HU Shihong. Video Request Prediction and Cooperative Caching Strategy Based on Federated Learning in Mobile Edge Computing[J]. Journal of Electronics & Information Technology, 2023, 45(1): 218-226. doi: 10.11999/JEIT211287 |
[1] |
Intel. How 5G will transform the business of media and entertainment[R]. 2018.
|
[2] |
MANSOURI Y and BABAR M A. A review of edge computing: Features and resource virtualization[J]. Journal of Parallel and Distributed Computing, 2021, 150: 155–183. doi: 10.1016/j.jpdc.2020.12.015
|
[3] |
LI Suoheng, XU Jie, VAN DER SCHAAR M, et al. Trend-aware video caching through online learning[J]. IEEE Transactions on Multimedia, 2016, 18(12): 2503–2516. doi: 10.1109/TMM.2016.2596042
|
[4] |
THAR K, TRAN N H, OO T Z, et al. DeepMEC: Mobile edge caching using deep learning[J]. IEEE Access, 2018, 6: 78260–78275. doi: 10.1109/ACCESS.2018.2884913
|
[5] |
RATHORE S, RYU J H, SHARMA P K, et al. DeepCachNet: A proactive caching framework based on deep learning in cellular networks[J]. IEEE Network, 2019, 33(3): 130–138. doi: 10.1109/MNET.2019.1800058
|
[6] |
杨静, 李金科. 带有特征感知的D2D内容缓存策略[J]. 电子与信息学报, 2020, 42(9): 2201–2207. doi: 10.11999/JEIT190691
YANG Jing and LI Jinke. Feature-aware D2D content caching strategy[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2201–2207. doi: 10.11999/JEIT190691
|
[7] |
SAPUTRA Y M, HOANG D T, NGUYEN D N, et al. Distributed deep learning at the edge: A novel proactive and cooperative caching framework for mobile edge networks[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1220–1223. doi: 10.1109/LWC.2019.2912365
|
[8] |
刘浩洋, 王钢, 杨文超, 等. 基于随机几何理论的流行度匹配边缘缓存策略[J]. 电子与信息学报, 2021, 43(12): 3427–3433. doi: 10.11999/JEIT210493
LIU Haoyang, WANG Gang, YANG Wenchao, et al. Popularity matching edge caching policy based on stochastic geometry theory[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3427–3433. doi: 10.11999/JEIT210493
|
[9] |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[10] |
GroupLens. Recommended for new research[EB/OL]. https://grouplens.org/datasets/movielens/, 2020.
|
[11] |
MÜLLER S, ATAN O, VAN DER SCHAAR M, et al. Context-aware proactive content caching with service differentiation in wireless networks[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1024–1036. doi: 10.1109/TWC.2016.2636139
|
[12] |
JIANG Yanxiang, MA Miaoli, BENNIS M, et al. User preference learning-based edge caching for fog radio access network[J]. IEEE Transactions on Communications, 2019, 67(2): 1268–1283. doi: 10.1109/TCOMM.2018.2880482
|
[13] |
GUO Dandan, CHEN Bo, LU Ruiying, et al. Recurrent hierarchical topic-guided RNN for language generation[C/OL]. The 37th International Conference on Machine Learning, 2020: 3810–3821.
|
[14] |
CUI Zhiyong, KE Ruimin, PU Ziyuan, et al. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values[J]. Transportation Research Part C:Emerging Technologies, 2020, 118: 102674. doi: 10.1016/j.trc.2020.102674
|
[15] |
ALE L, ZHANG Ning, WU Huici, et al. Online proactive caching in mobile edge computing using bidirectional deep recurrent neural network[J]. IEEE Internet of Things Journal, 2019, 6(3): 5520–5530. doi: 10.1109/JIOT.2019.2903245
|
[16] |
CHEN Mingzhe, YANG Zhaoyang, SAAD W, et al. A joint learning and communications framework for federated learning over wireless networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 269–283. doi: 10.1109/TWC.2020.3024629
|