Citation: | SUN Lei, YANG Yu, MAO Xiuqing, WANG Xiaoqin, LI Jiaxin. Data Generation Based on Generative Adversarial Network with Spatial Features[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1959-1969. doi: 10.11999/JEIT211285 |
[1] |
TAN Mingxing and LE Q V. EfficientNetV2: Smaller models and faster training[C]. The 38th International Conference on Machine Learning, San Diego, USA, 2021: 10096–10106.
|
[2] |
XIAO Zihao, GAO Xianfeng, FU Chilin, et al. Improving transferability of adversarial patches on face recognition with generative models[C]. 2021 IEEE/CVF Conference on Computer vision and Pattern Recognition, Nashville, USA, 2021: 11840–11849.
|
[3] |
CHEN Xiangning, XIE Cihang, TAN Mingxing, et al. Robust and accurate object detection via adversarial learning[C]. 2021 IEEE/CVF Computer vision and Pattern Recognition, Nashville, USA, 2021: 16617–16626.
|
[4] |
CHEN Pinchun, KUNG B H, and CHEN Juncheng. Class-aware robust adversarial training for object detection[C]. 2021 IEEE/CVF Conference on Computer vision and Pattern Recognition, Nashville, USA, 2021: 10415–10424.
|
[5] |
张春霞, 姬楠楠, 王冠伟. 受限波尔兹曼机[J]. 工程数学学报, 2015, 32(2): 159–173. doi: 10.3969/j.issn.1005-3085.2015.02.001
ZHANG Chunxia, JI Nannan, and WANG Guanwei. Restricted Boltzmann machines[J]. Chinese Journal of Engineering Mathematics, 2015, 32(2): 159–173. doi: 10.3969/j.issn.1005-3085.2015.02.001
|
[6] |
LOPES N and RIBEIRO B. Deep belief networks (DBNs)[M]. LOPES N and RIBEIRO B. Machine Learning for Adaptive Many-Core Machines - A Practical Approach. Cham: Springer, 2015: 155–186.
|
[7] |
KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
[8] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
[9] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
|
[10] |
RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]. The 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016.
|
[11] |
ARJOVSKY M, CHINTALA S, and BOTTOU L. Wasserstein generative adversarial networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 214–223.
|
[12] |
BLEI D M, KUCUKELBIR A, and MCAULIFFE J D. Variational inference: A review for statisticians[J]. Journal of the American statistical Association, 2017, 112(518): 859–877. doi: 10.1080/01621459.2017.1285773
|
[13] |
WEAVER N. Lipschitz Algebras[M]. Singapore: World Scientific, 1999.
|
[14] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein GANs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5769–5779.
|
[15] |
ZHANG Han, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019.
|
[16] |
GUO Jingda, MA Xu, SANSOM A, et al. Spanet: Spatial pyramid attention network for enhanced image recognition[C]. 2020 IEEE International Conference on Multimedia and Expo, London, UK, 2020: 1–6.
|
[17] |
丁斌, 夏雪, 梁雪峰. 基于深度生成对抗网络的海杂波数据增强方法[J]. 电子与信息学报, 2021, 43(7): 1985–1991. doi: 10.11999/JEIT200447
DING Bin, XIA Xue, and LIANG Xuefeng. Sea clutter data augmentation method based on deep generative adversarial network[J]. Journal of Electronics &Information Technology, 2021, 43(7): 1985–1991. doi: 10.11999/JEIT200447
|
[18] |
曹志义, 牛少彰, 张继威. 基于半监督学习生成对抗网络的人脸还原算法研究[J]. 电子与信息学报, 2018, 40(2): 323–330. doi: 10.11999/JEIT170357
CAO Zhiyi, NIU Shaozhang, and ZHANG Jiwei. Research on face reduction algorithm based on generative adversarial nets with semi-supervised learning[J]. Journal of Electronics &Information Technology, 2018, 40(2): 323–330. doi: 10.11999/JEIT170357
|
[19] |
ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2528–2535.
|
[20] |
IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
|
[21] |
DAHL G E, SAINATH T N, and HINTON G E. Improving deep neural networks for LVCSR using rectified linear units and dropout[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 8609–8613.
|
[22] |
XIAO F, HONMA Y, and KONO T. A simple algebraic interface capturing scheme using hyperbolic tangent function[J]. International Journal for Numerical Methods in Fluids, 2005, 48(9): 1023–1040. doi: 10.1002/fld.975
|
[23] |
XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv preprint arXiv: 1505.00853, 2015.
|
[24] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[25] |
LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Large-scale CelebFaces attributes (CelebA) dataset[Z]. Retrieved August, 2018.
|
[26] |
KRIZHEVSKY A. Learning multiple layers of features from tiny images[D]. [Master dissertation], University of Toronto, 2009.
|
[27] |
SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]. The 30th Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 2234–2242.
|
[28] |
DOWSON D C and LANDAU B V. The Fréchet distance between multivariate normal distributions[J]. Journal of Multivariate Analysis, 1982, 12(3): 450–455. doi: 10.1016/0047-259X(82)90077-X
|
[29] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|